带有双侧刚性约束的两自由度振动系统的动力学分析

侍玉青1,2, 杜三山2, 尹凤伟1, 吕小红1, 罗冠炜2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (14) : 37-47.

PDF(2548 KB)
PDF(2548 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (14) : 37-47.
论文

带有双侧刚性约束的两自由度振动系统的动力学分析

  • 侍玉青1,2, 杜三山2, 尹凤伟1, 吕小红1, 罗冠炜2
作者信息 +

Dynamics of a two-degree-of-freedom vibration system with bilateral rigid stops

  • SHI Yuqing1,2,DU Sanshan2,YIN Fengwei1,L Xiaohong1,LUO Guanwei2
Author information +
文章历史 +

摘要

研究了带有双侧刚性约束的两自由度受迫振动系统的动力学特性,推导了对称刚性约束振动系统对称型n-1-1振动的解析式及其Poincaré截面不动点的扰动映射,确定了不动点扰动映射的Jacobi矩阵,讨论了对称型n-1-1振动的不稳定性与局部分岔。基于多参数、多目标协同仿真分析揭示了振动系统低频域内基本周期冲击振动群、非完整颤振冲击振动、完整颤振冲击振动的特征及形成过程,探讨了相邻基本周期冲击振动相互转迁的不可逆性及其伴随的系列奇异点、迟滞转迁域和舌形转迁域的发生机理,发现了舌形转迁域内亚谐冲击振动的模式类型及特征规律。分析了带有非对称刚性约束的受迫振动系统在不同间隙阈值条件下周期、亚谐冲击振动的模式类型及发生区域,对比分析了带有对称和非对称刚性约束振动系统低频域内周期、亚谐冲击振动的模式类型、分布规律和分岔特征的异同性。

Abstract

The dynamics of a two-degree-of-freedom vibration system with bilateral rigid stops was studied.The analytic experssion of the symmetrical n-1-1 motion and disturbed map of the Poincaré section at the fixed point of the periodically-forced system with symmetric rigid stops were derived.The Jacobi matrix of the disturbed map at the fixed point was determined.The instability and local bifurcation of the period n single-impact symmetrical motion were discussed.The distribution and formation of the fundamental period group of impact motions, the incomplete and complete chattering-impact motions of the vibration system in low frequency region were revealed by the multi-target and multi-parameter co-simulation analysis.The irreversible transition process between adjacent impact motions with fundamental period and the mechanism of hysteresis and tongue-shaped regions, as well as a series of singularities were discussed.Pattern types and characteristic laws of sub-harmonic impact motions were found in the tongue-shaped regions.Pattern types and existence regions of different periodic-impact motions of the vibration system with asymmetric bilateral stops under different clearance thresholds were analyzed.Pattern types, distribution and bifurcation characteristics of sub-harmonic impact motions in the tongue-shaped regions of the two kinds of periodically-forced vibration systems with symmetric and asymmetric stops were compared analytically.

关键词

间隙 / 约束 / 冲击 / 低频振动 / 分岔

Key words

clearance / stop / impact / low frequency vibration / bifurcation.

引用本文

导出引用
侍玉青1,2, 杜三山2, 尹凤伟1, 吕小红1, 罗冠炜2. 带有双侧刚性约束的两自由度振动系统的动力学分析[J]. 振动与冲击, 2019, 38(14): 37-47
SHI Yuqing1,2,DU Sanshan2,YIN Fengwei1,L Xiaohong1,LUO Guanwei2. Dynamics of a two-degree-of-freedom vibration system with bilateral rigid stops[J]. Journal of Vibration and Shock, 2019, 38(14): 37-47

参考文献

[1]  S.W. Shaw, P.J. Holmes. A periodically forced piecewise linear oscillator [J]. Journal of Sound and Vibration, 1983, 90(1): 129–155.
[2]  F. peterka, J. Vacik. Transition to chaotic motion in mechanical systems with impacts [J]. Journal of Sound and Vibration, 1992, 154(1): 95-115.
[3]  J.O. Aidanpää, B.R. Gupta. Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system [J]. Journal of Sound and Vibration, 1993, 165(2): 305–327.
[4]  Jin Dongping, Huhai Yan. Periodic vibro-impacts and their stability of a dual component system [J]. Acta Mechanica Sinica, 1997, 13(4): 366-397.
[5]  J. Knudsen, A. R Massih. Dynamic stability of weakly damped oscillators with elastic impacts and wear [J]. Journal of Sound and Vibration, 2003, 263(1): 175–204.
[6]  Li Qunhong, Lu Qishao. Coexisting periodic orbits in vibro-impacting dynamical systems [J]. Applied Mathematics and Mechanics, 2003, 24(3): 261-273.
[7]  R.I. Leine. Non-smooth stability analysis of the parametrically excited impact oscillator [J]. International Journal of Non-Linear Mechanics, 2012, 47(9): 1020-1032.
[8]  李群宏,陆启韶. 一类双自由度碰振系统运动分析[J]. 力学学报, 2001, 33(6): 776-786.
LI Qunhong, LU Qishao. Analysis to motions of a two-degree-of-freedom vibro-impact system [J]. Acta Mechanica Sinica, 2001, 33(6): 776-786.
[9]  G.L. Wen. Codimension-2 Hopf bifurcation of a two-degree -of-freedom vibro-impact system [J]. Journal of Sound and Vibration, 2001, 242(3): 475–485
[10] Ekaterina Pavlovskaia, Marian Wiercigroch, Celso Grebogi. Two -dimensional map for impact oscillator with drift [J]. Physical Review E, 2004, 70(3): 036201.
[11] Jianhua Xie, Wangcai Ding, E. H. Dowell, L. N. Virgin. Hopf–flip bifurcation of high dimensional maps and application to vibro-impact systems [J]. Acta Mechanica Sinica, 2005, 21(4): 402–410.
[12] 乐源. 一类碰撞振动系统在内伊马克沙克-音叉分岔点附近的局部两参数动力学[J]. 力学学报, 2016, 48(1): 163-172.
YUE Yuan. Local dynamical behavior of two-parameter family near the neimark-sacker-pitchfork bifurcation point in a vibro-impact system [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 163-172.
[13] Krzysztof Czolczynski, Andrzej Okolewski, Barbara Blazejczyk -Okolewskaa. Lyapunov exponents in discrete modelling of a cantilever beam impacting on a moving base [J]. International Journal of Non–Linear Mechanics, 2017, 88:  74-84.
[14] Yongxiang Zhang, Guanwei Luo. Detecting unstable periodic orbits and unstable quasiperiodic orbits in vibro-impact systems [J]. International Journal of Non-Linear Mechanics, 2017, 96: 12–21.
[15] A.B. Nordmark. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. Journal of Sound and Vibration, 1991, 145(2): 279–297.
[16] G.S. Whiston. Singularities in vibro-impact dynamics [J]. Journal of Sound and Vibration, 1992, 152(3): 427–460.
[17] A.P. Ivanov. Stabilization of an impact oscillator near grazing incidence owing to resonance [J]. Journal of Sound and Vibration, 1993, 162(3): 562–565.
[18] H.Y. Hu. Detection of grazing orbits and incident bifurcations of a forced continuous, piecewise-linear oscillator [J]. Journal of Sound and Vibration, 1994, 187(3): 485–493.
[19] J. de Weger, W. van de Water, J. Molenaar. Grazing impact oscillations [J]. Physics Review E, 2000, 62 (2B): 2030–2041.
[20] M. di Bernardo, C.J. Budd, A.R. Champneys, Grazing and border-collision in piecewise-smooth systems: a unified analytical framework [J]. Physical Review Letters, 2001, 86(12):  2553–2556.
[21] Haibo Jiang, Antonio S.E. Chong, Yoshisuke Uedab, MarianWiercigroch. Grazing-induced bifurcations in impact oscillators with elastic and rigid constraints [J]. International Journal of Mechanical Sciences, 2017, 127: 204-214.
[22] Harry Dankowicz, Xiaopeng Zhao. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators [J]. Physica D, 2005, 202(3–4):  238–257.
[23] 黄甫玉高,李群宏. 一类单侧碰撞悬臂振动系统的擦边分岔分析[J]. 力学学报, 2008, 40(6): 812-819 .
HUANGFU Yugao, LI Qunhong. Grazing bifurcation of a vibrating cantilever system with one-sided impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 812-819.
[24] N. Humphries, P.T. Piiroinen. A discontinuity-geometry view of the relationship between saddle–node and grazing bifurcations [J]. Physica D, 2012, 241(22): 1911–1918.
[25] Sergey Kryzhevich, Marian Wiercigroch. Topology of vibro-impact systems in the neighborhood of grazing [J]. Physica D, 2012, 241(22): 1919–1931.
[26] 冯进钤,徐伟. 碰撞振动系统中周期轨擦边诱导的混沌激变[J]. 力学学报, 2013, 45(1): 30-36.
FENG Jinqian, XU Wei. Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 30-36.
[27] C. Toulemonde, C. Gontier. Sticking motions of impact oscillators [J]. European Journal of Mechanics A/Solids, 1998, 17 (2): 339–366.
[28] Satoshi Ema, Etsuo Marui. Suppression of chatter vibration of boring tools using impact dampers [J]. International Journal of Machine Tools and Manufacture, 2000, 40(8): 1141–1156.
[29] D. J. Wagg. Multiple non-smooth events in multi-degree-of- freedom vibro-impact systems [J]. Nonlinear Dynamics, 2006, 43: 137–148.
[30] A.B. Nordmark, P.T. Piiroinen. Simulation and stability analysis of impacting systems with complete chattering [J]. Nonlinear Dynamics, 2009, 58: 85–106.
[31] D. Chillingworth, Dynamics of an impact oscillator near a degenerate graze [J]. Nonlinearity, 2010, 23(11): 2723–2748.
[32] Albert C.J. Luo, Dennis O'Connor. Mechanism of impacting chatter with stick in a gear transmission system [J]. International Journal of Bifurcation and Chaos, 2009, 19(6): 2093–2105.
[33] Csaba Hős, Alan R. Champneys, Grazing bifurcations and chatter in a pressure relief valve model [J]. Physica D, 2012, 241: 2068–2076.
[34] H.Y. Hu. Controlling chaos of a dynamical system with discontinuous vector field [J]. Physica D, 1997, 106(1): l-8.
[35] S.L.T. de Souza, I.L. Caldas. Controlling chaotic orbits in mechanical systems with impacts [J]. Chaos, Solitons and Fractals, 2004, 19: l7l-178.
[36] G. W. Luo, X. H. Lv. Controlling bifurcation and chaos of a plastic impact oscillator [J]. NonlinearAnalysis, Series B: Real World Applications, 2009, 10 (4): 2047-2061.

PDF(2548 KB)

577

Accesses

0

Citation

Detail

段落导航
相关文章

/