一类电磁式薄膜振动能量采集器动力学建模与非线性分析

王志霞1,2,王炜 1,2,张琪昌1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 127-133.

PDF(1302 KB)
PDF(1302 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 127-133.
论文

一类电磁式薄膜振动能量采集器动力学建模与非线性分析

  • 王志霞1,2,王炜 1,2,张琪昌1,2
作者信息 +

Dynamic modeling and nonlinear analysis for a type electromagnetic membrane vibration energy harvester

  • WANG Zhixia1,2, WANG Wei1,2, ZHANG Qichang1,2
Author information +
文章历史 +

摘要

将柔性薄膜和磁铁弹簧相结合,借助振子的阱间运动特性,创新性地设计了一类具有双稳态形式的电磁式振动能量采集器。对系统中的主要非线性因素(具有中心质量的薄膜振子大变形以及非线性形式的磁场力)进行了全面的分析,进而结合虚功原理建立了系统的振动控制方程。采用理论、数值模拟和实验等手段进行了动力学分析,证明了控制方程的准确性,也验证了双稳态所表征的阱间运动能够有效地拓宽结构的工作带宽、提高输出功率。研究结果对于类似柔性体结构多稳态能量采集器的设计、优化,理论分析都提供了可供借鉴的参考依据。

Abstract

A flexible membrane and a magnet spring were innovatively combined to design a type bi-stable state electromagnetic vibration energy harvester by means of inter-well motion characteristics of vibrator.The main nonlinear factors in the system, such as, large deformation of film vibrator with center-mass and nonlinear magnetic field force were comprehensively analyzed, and then the vibration control equation of the system was established using the virtual work principle.The system’s dynamic analysis was performed with theoretical analysis, numerical simulation and tests to verify the correctness of the governing equation.It was shown that the inter-well motion characterized by bi-stable state can effectively widen working bandwidth of the structure and improve its output power; the results can provide a reference for design, optimization and theoretical analysis of multi-stable state energy harvesters of structures similar to flexible bodies.

关键词

柔性薄膜 / 磁铁弹簧 / 双稳态能量采集器 / 动力学分析

Key words

flexible membrane / magnet spring / bistable energy harvester / dynamic analysis

引用本文

导出引用
王志霞1,2,王炜 1,2,张琪昌1,2. 一类电磁式薄膜振动能量采集器动力学建模与非线性分析[J]. 振动与冲击, 2019, 38(15): 127-133
WANG Zhixia1,2, WANG Wei1,2, ZHANG Qichang1,2. Dynamic modeling and nonlinear analysis for a type electromagnetic membrane vibration energy harvester[J]. Journal of Vibration and Shock, 2019, 38(15): 127-133

参考文献

[1] 邱清泉,肖立业,辛守乔,等. 振动式微型发电机的研究进展[J]. 振动与冲击,2010, 29(9): 191-195.
QIU Qing-quan, XIAO Li-ye, XIN Shou-qiao, et al. Research Progress of Vibration Powered Microgenerator[J]. Journal of Vibration and Shock, 2010, 29(9): 191-195.
[2] Cooley C G. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics [J]. Mechanical Systems and Signal Processing, 2017, 94: 237-252.
[3] Truong B D, Le C P, Halvorsen E. Analysis of electrostatic energy harvesters electrically configured as bennets doublers [J]. Ieee Sensors Journal, 2017, 17(16): 5180-5191.
[4] 吴义鹏,季宏丽,裘进浩,等. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击,2017, 36(5): 12-16.
WU Yi-peng, JI Hong-li, QIU Jin-hao, et al. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies [J]. Journal of Vibration and Shock, 2017, 36(5): 12-16.
[5] 王祖尧, 丁虎, 陈立群. 两自由度磁力悬浮非线性振动能量采集研究[J]. 振动与冲击,2016, 35(16): 55-58.
WANG Zu-yao, DING Hu, CHEN Li-qun. Nonlinear oscillations of a two-degree-of freedom energy harvester of magnetic levitation [J]. Journal of Vibration and Shock, 2016, 35(16): 55-58.
[6] 姚明辉,李印波,张伟. 纵向辅磁双稳态压电悬臂梁非线性动力学[J]. 北京工业大学学报,2015, 41(11): 1756-1760.
YAO Ming-hui, LI Yin-bo, ZHANG Wei. Nonlinear dynamics on auxiliary magnet for a bistable piezoelectric cantilever beam [J]. Journal of Beijing University of Technology, 2015, 41(11): 1756-1760.
[7] 李海涛,秦卫阳,邓王蒸,等. 复合式双稳能量采集系统动力学及相干共振[J]. 振动与冲击,2016, 35(14): 119-124.
LI Hai-tao, QIN Wei-yang, DENG Wang-zheng, et al. Dynamics and coherence resonance of a hybrid energy harvesting system [J]. Journal of Vibration and Shock, 2016, 35(14): 119-124.
[8] Wang C, Zhang Q C, Wang W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity [J]. Journal of Sound and Vibration, 2017, 399: 169-181.
[9] Ayala-Garcia I N, Mitcheson P D, Yeatman E M, et al. Magnetic tuning of a kinetic energy harvester using variable reluctance [J]. Sensors and Actuators A: Physical, 2013, 189(2): 266-275.
[10] Zhu D B, Beeby S, Tudor J, et al. Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays [J]. Sensors and Actuators A: Physical, 2013, 203(12): 11-19.
[11] Naifar S, Bradai S, Viehweger C, et al. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation [J]. Measurement, 2016, 106: 251-263.
[12] Spreemann D, Manoli Y. Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization [M]. New York: Springer Netherlands, 2012.
[13] Williams C B, Shearwood C, Harradine, M A, et al. Development of an electromagnetic micro-generator [J]. Iee Proceedings-Circuits Devices and Systems, 2002, 148(6): 337-342.
[14] Khan F U, Sassani F, Stoeber B. Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations [J]. Microsystem Technologies, 2014, 20(7): 1323-1335.
[15] Khan F U, Izhar. Electromagnetic energy harvester for harvesting acoustic energy [J]. Sādhanā, 2016, 41(4): 397-405.
[16] Khan F U, Sassani F, Stoeber B. State of the art in acoustic energy harvesting [J]. Journal of Micromechanics and Microengineering, 2015, 25(2): 125-130.
[17] EI-Hami M, Glynne-Jones P, White N M, et al. Design and fabrication of a new vibration-based electromechanical power generator [J]. Sensors and Actuators A-Physical, 2001, 92(1): 335-342.
[18] Glynne-Jones P, Tudor M J, Beeby S P, et al. A micro electromagnetic generator for vibration energy harvesting [J]. Sensors and Actuators: A-Physical, 2004, 10(1-3): 344-349.
[19] Shahruz S M. Design of mechanical band-pass filters for energy scavenging [J]. Journal of Sound and Vibration, 2006, 292(3-5): 987-998.
[20] Soliman M S M, Abdekrahman E M, Elsaadany E F, et al. A wideband vibration-based energy harvester [J]. Journal of Micromechanics and Microengineering, 2008, 18(11): 115021.
[21] Soliman M S M, Abdekrahman E M, Elsaadany E F, et al. A design procedure for wideband micropower generators [J]. Journal of Micromechanics and Microengineering, 2010, 18(6): 1288-1299.
[22] Kluger J M, Sapsis T P, Slocum A H. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams [J]. Journal of Sound and Vibration, 2015, 341: 174-194.
[23] Lee C, Stamp D, Kapania N R, et al. Harvesting vibration energy using nonlinear oscillations of an electromagnetic inductor [J]. The International Society for Optical Engineering, 2010, 7683(6): 728-736.
[24] Barton D A W, Burrow S G, Clare L R. Energy harvesting from vibrations with a nonlinear oscillator [J]. Journal of Vibration and Acoustics, 2009, 132(2): 427-436.
[25] Thomson W T. Theory of Vibration with Applications [M]. 北京: 清华大学出版社,2015.

PDF(1302 KB)

651

Accesses

0

Citation

Detail

段落导航
相关文章

/