GMA的温度特性分析及热形变被动补偿方法研究

刘慧芳1, 2,马凯1,梁全1,谷艳玲1,王汉玉1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 149-156.

PDF(2403 KB)
PDF(2403 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 149-156.
论文

GMA的温度特性分析及热形变被动补偿方法研究

  • 刘慧芳1, 2,马凯1,梁全1,谷艳玲1,王汉玉1
作者信息 +

Temperature characteristics of GMA and passive compensation method for its thermal deformation

  • LIU Huifang1, 2  MA Kai1  LIANG Quan1  GU Yanling1  WANG Hanyu1
Author information +
文章历史 +

摘要

利用超磁致伸缩材料的磁致伸缩效应特性制成的磁致伸缩智能构件,位移输出精度可达亚微米级,这为精密与超精密加工领域提供了新的驱动解决方案,这种精密微驱动过程是依靠智能材料的功能性实现的。然而,在磁致伸缩智能构件工作过程中,线圈的焦耳热损耗、材料磁滞与涡流损耗等因素会导致其温度升高,并伴随着材料出现热变形、磁致伸缩系数不稳定等问题,从而严重影响系统的输出性能。为降低温升对磁致伸缩智能构件工作性能的影响,本文对超磁致伸缩致动器的温度变化特性进行了深入分析,提出一种热形变被动补偿机构,完成了具有热形变自补偿功能的超磁致伸缩致动器设计。实验结果表明,磁致伸缩致动器的主要发热形式和发热源,取决于激励电流形式、工作频率;所设计的超磁致伸缩致动器在工作过程中能够对热形变自动进行补偿。研究结果为提高磁致伸缩智能构件在精密与超精密驱动领域应用过程中的工作精度提供了一种途径。

Abstract

Smart magnetostrictive device based on magnetostrictive effect of giant magnetostrictive materials has a displacement output precision of submicron level to provide a new driving solving scheme for precision and ultra precision machining fields.This precision micro-driving process is realized with the functionality of smart materials.However, in working process of a smart magnetostrictive device, coil’s Joule heat dissipation, materials’ hysteresis and eddy current dissipation may make its temperature rise and may be accompanied by thermal deformation of materials and instability of magnetostrictive coefficient to seriously affect the system’s output performance.Here, temperature variation characteristics of a giant magnetostrictive actuator (GMA) were analyzed deeply.A passive compensation mechanism for thermal deformation was proposed to design a GMA with thermal deformation self-compensation function.Test results showed that GMA’s heating forms and heat sources depend on excitation current forms and working frequency; the designed GMA can automatically compensate its thermal deformation in its working process; the study results can provide a way to improve working accuracy of magnetostrictive devices applied in precision and ultra precision machining fields.

关键词

超磁致伸缩致动器 / 温度 / 热形变 / 被动补偿

Key words

Giant magnetostrictive actuator / Temperature / Thermal deformation / Passive compensation

引用本文

导出引用
刘慧芳1, 2,马凯1,梁全1,谷艳玲1,王汉玉1. GMA的温度特性分析及热形变被动补偿方法研究[J]. 振动与冲击, 2019, 38(15): 149-156
LIU Huifang1, 2 MA Kai1 LIANG Quan1 GU Yanling1 WANG Hanyu1. Temperature characteristics of GMA and passive compensation method for its thermal deformation[J]. Journal of Vibration and Shock, 2019, 38(15): 149-156

参考文献

[1] 薛光明, 张培林, 何忠波, 等. 喷油器用超磁致伸缩致动器多自由度模型[J]. 机械工程学报, 2015, 51(24):97-104.
XUE Guangming, ZHANG Peilin, HE Zhongbo, et al. Multiple degrees of freedom model of giant magnetostrictive actuator used on high-pressure-common-rail injector [J]. Journal of Mechanical Engineering, 2015, 51(24): 97 - 104.
[2] 胡世峰, 朱石坚, 楼京俊, 等. 基于CMAC小脑神经网络的超磁致伸缩作动器高精度控制的仿真研究[J]. 振动与冲击, 2009,28(3):68-72.
HU Shifeng, ZHU Shijian, LOU Jingjun, et al. Simulation Research on High Precision Magnetostrictive Actuator Control Based on CMAC Cerebellar Neural Network[J]. Journal of Vibration and Shock, 2009, 28(3):68-72.
[3] Zhou H M, Zheng X J, Zhou Y H. Active vibration control of nonlinear giant magnetostrictive actuators [J]. Smart Mater. Struct . 2006(15):792-798.
[4] Nakano I,Tsuchiya T, Amitani Y. Giant magnetostrictive acoustic transducer and its application to acoustic monitoring of oceans[C]//Proc. Intern. Symp. on Giant Magnetostrictive Materials and Their Application in Japan, 1992:77-82.
[5] 郭咏新, 张臻, 王贞艳, 等. 超磁致伸缩作动器的率相关振动控制实验研究[J]. 振动与冲击, 2015,34(12):51-57.
GUO Yongxin, ZHANG Zhen, WANG Zhenyan, et al. Experimental investigation on rate-dependent vibration control of giant magnetostrictive actuators[J]. Journal of Vibration and Shock, .2015, 34(12):51-57.
[6] Yang J S, He Z. Direct drive servo valve based on magnetostrictive actuator:Multi-coupled modeling and its compound control strategy[J].Sensors and Actuators A, 235 (2015) 119–130.
[7] GUO J, SUZUKI H, MORITA S Y, et al. Micro-aspheric mold polishing utilizing magnetostrictive vibration-assisted polishing machine [J]. Key Engineering Materials, 2012, 523-524: 768-773.
[8] WU YJ, XIANG ZQ. Machining principle for non-cylinder pin hole of piston based on giant magnetostrictive material [J]. Journal of Zhejiang University, 2004, 39(9): 1185-1189.
[9] LIU H F,MA C, WANG H Y. Study on an actuator with giant magnetostrictive materials for driving galvanometer in selective laser sintering precisely [J].International Journal of Mechatronics and Manufacturing Systems, 2015,8(3/4): 116-133.
[10] 徐彭有, 杨斌堂, 孟光, 等. 天文望远镜子镜超磁致伸缩驱动器驱动模型及参数识别[J]. 天文研究与技术, 2010, 7(4):150-157.
XU Pengyou, YANG Bintang, MENG Guang, et al. Modeling and parameter identification for giant magnetostrictive actuators applied in driving segmented mirrors[J]. Astronomical Research & Technology, 2010, 7(4): 150 - 157.
[11] 贾振元, 王福吉, 邹君, 等. 超磁致伸缩材料传感/执行器的原理与应用[J]. 振动、测试与诊断, 2013, 33(4): 539 - 546.
JIA Zhenyuan, WANG Fuji, ZOU Jun, et al. Principle and application of giant magnetostrictive sensors and actuators [J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(4): 539 - 546.
[12] 朱玉川, 徐鸿翔, 陈龙, 等. 基于双曲正切函数磁滞算子的超磁致伸缩驱动器动态Preisach模型[J]. 机械工程学报, 2014, 50(6): 165-170.
ZHU Yuchuan, XU Hongxiang, CHEN Long, et al. Dynamic preisach model in giant magnetostrictive actuator based on hyperbolic tangent function hysteresis operators [J]. Journal of Mechanical Engineering, 2014, 50(6): 165 - 170.
[13] XIU C Z, REN L, LI H N. Study on an innovative self-inductance tension eddy current sensor based on the inverse magnetostrictive effect. Sensor Review, 2017, 37(1):43-53.
[14] 卢全国, 陈定方, 钟毓宁, 等. 超磁致伸缩致动器热变形影响及温控研究[J]. 中国机械工程, 2007, 18(1): 16-19.
LU Quanguo, CHEN Dingfang, ZHONG Yuning, et al. Research on thermal deformation and temperature control of giant magnetostrictive actuator [J]. Chinese Mechanical Engineering, 2007, 18(1): 16 - 19.
[15] 刘慧芳, 王汉玉, 王洁, 等. 精密磁致伸缩致动器的动态非线性多场耦合建模[J].光学精密工程, 2016, 24(5):1128-1137.
LIU Huifang, WANG Hanyu, WANG Jie, et al. Modeling of dynamic nonlinear nulti-field coupling for precision magnetostrictive  actuators [J]. Optical and Precision Engineering, 2016, 24(5):1128-1137.
[16] 邬义杰, 徐杰. 超磁致伸缩执行器热误差补偿及抑制方法研究[J]. 工程设计学报, 2005, 12(4):214-215. 
WU Yijie, XU Jie. Research on methods of thermal error compensating and restraining in giant magnetostrictive actuator[J]. Journal of Engineering Design, 2005, 12(4):213-218.
[17] 隋晓梅, 陈文卓. 超磁致伸缩执行器温控系统的设计与实现[J].华北科技学院学报. 2012, 9(1):70-71.
SUI Xiaomei, CHEN Wenzuo. Design and Implementation of Temperature Control System for Giant Magnetostrictive Actuator[J]. Journal of North China Institute of Science and Technology. 2012, 9(1):70-73.
[18] ZHU Y C, YANG X L, WERELEY N M. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator. Smart Materials and Structures, 2016, 25 (8): 085030(Article number).

PDF(2403 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/