基于能量守恒的平面大变形欧拉梁逐步积分算法

谢金哲1,吴斌2,1,杨浩文1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 157-162.

PDF(1346 KB)
PDF(1346 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 157-162.
论文

基于能量守恒的平面大变形欧拉梁逐步积分算法

  • 谢金哲1,吴斌2,1,杨浩文1
作者信息 +

Step by step integration method in time domain for planar Euler-Bernoulli beams with  large deformation based on energy conservation

  • XIE Jinzhe1, WU Bin1,2, YANG Haowen1
Author information +
文章历史 +

摘要

建立了用于描述平面欧拉梁大变形状态的形函数,并在动力响应数值分析中通过运用能量方法实现了算法的无条件稳定。空间离散采用对水平位移和竖向位移独立插值的方法,使其能够描述欧拉梁大变形状态。在时间离散上采用单参数修正方法对速度-加速度关系进行修正,实现了保守荷载作用下的结构能量守恒,同时该算法具有二阶局部精度。最后,通过三个数值模拟算例验证了算法的有效性。

Abstract

Here, a shape function to describe a planar Euler beam’s large deformation state was built, and the principle of energy conservation was employed to realize the used algorithm’s unconditionally stable in its dynamic response numerical analysis.The beam’s horizontal displacement and vertical one were discretized in space using the independent interpolation method to be able to describe its large deformation state.A single-parameter correction method was utilized to modify the relation between velocity and acceleration to realize the beam’s energy conservation under the action of conservative loads for time discretizing and the algorithm having local second-order accuracy.Finally, the effectiveness of the proposed algorithm was verified with three numerical simulation examples.

关键词

结构动力分析 / 逐步积分方法 / 有限单元法 / 几何非线性 / 欧拉梁

Key words

structural dynamic analysis / step-by-step method / finite element method / geometric nonlinearity / Euler-Bernoulli beam

引用本文

导出引用
谢金哲1,吴斌2,1,杨浩文1. 基于能量守恒的平面大变形欧拉梁逐步积分算法[J]. 振动与冲击, 2019, 38(15): 157-162
XIE Jinzhe1, WU Bin1,2, YANG Haowen1. Step by step integration method in time domain for planar Euler-Bernoulli beams with  large deformation based on energy conservation[J]. Journal of Vibration and Shock, 2019, 38(15): 157-162

参考文献

[1] 周惠蒙,吴斌.采用滑动模态控制器的实时子结构试验等效力控制方法[J].振动与冲击, 2012, 31(07):27-33.
ZHOU Meng-hui, WU Bin. Equivalent force control method with sliding mode controller for real-time substructure test [J]. Journal of Vibration and Shock, 2012, 31(07):27-33 (in Chinese).
[2] 陈伯望,王海波.非线性精细积分方法及其在拟动力试验中的应用[J].振动与冲击, 2009, 28(01):88-91+98+198.
CHEN Bo-wang, WANG Hai-bo. Nonlinear precise integration method and its application in pseudo-dynamic test of structures [J]. Journal of Vibration and Shock, 2009, 28(01):88-91+98+198 (in Chinese).
[3] Newmark N M. A method of computation for structural dynamics[J]. Journal of the engineering mechanics division, 1959, 85(3): 67-94.
[4] Nickel R E. On the stability of approximation operators in problems of structural dynamics[J]. International Journal of Solids & Structures, 1971, 7(3):301-319.
[5] Wood W L. Practical time-stepping schemes [M]. Oxford:   ClarendonPress,1990:22-25.
[6] Xie Y M, Steven G P. Instability, chaos, and growth and decay of energy of time-stepping schemes for non-linear dynamic equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(5): 393-401.
[7] Belytschko T, Schoeberle D. On the unconditional stability of an implicit algorithm for nonlinear structural dynamics [J]. Journal of Applied Mechanics, 1975, 42(4): 865-869.
[8] 潘天林,吴斌.隐式中点法对于非线性阻尼结构的稳定性[J].振动与冲击, 2013, 32(23):38-42.
PAN Tian-lin, WU Bin. Stability of implicit algorithm for solving nonlinear damped structures [J]. Journal of Vibration and Shock, 2013, 32(23):38-42(in Chinese).
[9] Hughes T J R, Caughey T K, Liu W K. Finite-Element Methods for Nonlinear Elastodynamics Which Conserve Energy [J]. Journal of Applied Mechanics, 1978, 45(2):366-370.
[10] 吴斌,潘天林,谢金哲. 能量一致积分方法及其在混合试验中的应用 [A].第25届全国结构工程学术会议论文集(第Ⅰ册)[C].2016:11.
Wu B, Pan T L, Xie J Z. Energy Consistent Integration Method and Its Application to Hybrid Testing [A]. Proceedings of the 25th national conference on structural engineering(Vol.1) [C].2016:11 (in Chinese)
[11] Crisfield MA, Shi J. A co-rotational element/time-integration strategy for non-linear dynamics [J]. International Journal for Numerical Methods in Engineering, 1994, 37(11): 1897-1913.
[12] Simo J C, Tarnow N. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1992, 43(5): 757-792.
[13] Simo J C, Tarnow N, Doblare M. Non linear dynamics of three dimensional rods: Exact energy and momentum conserving algorithms [J]. International Journal for Numerical Methods in Engineering, 1995, 38(9): 1431-73.
[14] Zhang R, Zhong H. A quadrature element formulation of an energy–momentum conserving algorithm for dynamic analysis of geometrically exact beams [J]. Computers & Structures, 2016, 165:96-106.
[15] 李妍,吴斌,欧进萍.能量守恒逐步积分方法数值解研究[J].振动与冲击,2010, 29(05):16-19+34+237.
LI Yan, WU Bin, OU Jin-ping. Numerical solutions of energy-conserving time integration methods [J]. Journal of Vibration and Shock, 2010, 29(05):16-19+34+237 (in Chinese).
[16] Galvanetto U, Crisfield M A. An Energy‐Conserving Co‐rotational Procedure for the Dynamics of Planar Beam Structures [J]. International journal for numerical methods in engineering, 1996, 39(13): 2265-2282.
[17] 潘天林. 能量一致积分方法及其在混合试验中的应用[D].哈尔滨工业大学,2016.
Pan T L. Energy Consistent Integration Method and Its Application to Hybrid Testing [D]. Harbin Institute of Technology,2016(in Chinese).
[18] Chhang S, Sansour C, Hjiaj M, et al. An energy-momentum co-rotational formulation for nonlinear dynamics of planar beams [J]. Computers & Structures, 2017, 187:50-63.
[19] 古雅琦,王海龙,杨怀宇. 一种大变形几何非线性Euler-Bernoulli梁单元[J]. 工程力学,2013,30(06):11-15.
Gu Y Q, Wang H L, Yang H Y. A Large Deformation Geometric Nonlinear Euler-Bernoulli Beam Element [J].Engineering Mechanics, 2013,30(06):11-15 (in Chinese).
[20] 陈至达.杆、板、壳大变形理论[M].北京:科学出版社.1996:312-330.
Chen Z D. Large deformation theory of link, plane,shell [M]. Beijin: Science Press.1996: 312-330.

PDF(1346 KB)

396

Accesses

0

Citation

Detail

段落导航
相关文章

/