线载荷作用下面内运动正交各向异性板的亚谐波共振

胡宇达1,2,张晓宇1,2,郝颖1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 163-171.

PDF(3040 KB)
PDF(3040 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 163-171.
论文

线载荷作用下面内运动正交各向异性板的亚谐波共振

  • 胡宇达1,2,张晓宇1,2,郝颖1,2
作者信息 +

Subharmonic resonance for in-plane motion of orthotropic plates under linear loads

  • HU Yuda1,2, ZHANG Xiaoyu1,2,HAO Ying1,2
Author information +
文章历史 +

摘要

研究面内运动正交各向异性薄板在线载荷作用下的亚谐波共振问题。首先给出面内运动正交各向异性薄板的动能和势能表达式,并推得几何非线性下正交各向异性条形板的非线性振动方程。针对简支边界约束情况,考虑三阶模态并运用伽辽金积分法,推得关于时间变量的无量纲化达芬型非线性振动微分方程组。应用多尺度法对非线性系统的亚谐波共振问题进行求解,得到了稳态运动下关于不同阶模态的共振幅值响应方程。应用李雅普诺夫稳定性理论,对解的稳定性进行分析,得到了稳态解的稳定性判别式。通过数值算例,得到了振幅特性变化曲线图,分析了速度、线载荷、材料属性等参量对系统共振特性的影响,结果表明,系统呈现较为明显的非线性共振特征。

Abstract

Here, subharmonic resonance problems for in-plane motion of orthotropic plates under linear loads were studied.The kinetic and potential energy expressions for in-plane motion of an orthogonal plate were derived and nonlinear vibration equations of an orthotropic strip-shaped plate with geometric nonlinearity were deduced.Under simply supported boundary conditions, considering the first three order modes and using Galerkin integral method, a non-dimensional Duffing nonlinear vibration differential equation system with respect to time variables was deduced.The subharmonic resonance problem of this nonlinear system was solved using the multi-scale method to acquire resonant amplitude equations for different order modes of steady-state response solution.Lyapunov stability theory was applied to analyze solution stability, and obtain the steady-state solution’s stability discriminant.The amplitude characteristics variation curves were obtained with numerical examples.Effects of parameters, such as, velocity, linear load and material properties on the system’s resonance characteristics were analyzed.The results showed that the system reveals more obvious nonlinear resonance characteristics.

关键词

正交各向异性板 / 亚谐波共振 / 面内运动 / 线载荷 / 多尺度法

Key words

Orthotropic plates / subharmonic resonance / In-plane exercise / linear load / multiple scales method

引用本文

导出引用
胡宇达1,2,张晓宇1,2,郝颖1,2. 线载荷作用下面内运动正交各向异性板的亚谐波共振[J]. 振动与冲击, 2019, 38(15): 163-171
HU Yuda1,2, ZHANG Xiaoyu1,2,HAO Ying1,2. Subharmonic resonance for in-plane motion of orthotropic plates under linear loads[J]. Journal of Vibration and Shock, 2019, 38(15): 163-171

参考文献

[1] CRABTREE O I, MESAROVIC S D, RICHARDS R F, et al. Nonlinear vibrations of a pre-stressed laminated thin plate[J]. International Journal of Mechanical Sciences, 2006, 48(4): 451-459.
[2] HOUMAT A. Nonlinear free vibration analysis of variable stiffness symmetric skew laminates[J]. European Journal of Mechanics-A/Solids, 2014, 50(50): 70-75.
[3] UDAR R S, DATTA P K. Combination resonance characteristics of laminated composite plates subjected to non-uniform harmonic edge loading[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(2): 107-119.
[4] MERGEN H, GHAYESH, MARCO A. Non-linear global dynamics of an axially moving plate[J]. International Journal of Non-Linear Mechanics, 2013, 57(2): 16-30.
[5] LAL A, SINGH B N, KUMAR R. Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties[J]. International Journal of Mechanical Sciences, 2008, 50(7): 1203-1212.
[6] 胡宇达, 吕书峰, 李佰洲. 叠层板在两项简谐激励作用下的组合共振分析[J]. 工程力学, 2010, 27(6): 40-44.
     HU Yu-da, LV Shu-feng, LI Bai-Zhou. Composition resonance analysis of laminated plates under two harmonic excitation[J]. Journal of Engineering Mechanics, 2010, 27(6): 40-44.
[7] 胡宇达, 吕书峰, 杜国君. 复合材料层合板的非线性组合共振及其分岔[J]. 复合材料学报, 2010, 27(2): 176-182.
     HU Yu-da, LV Shu-feng, DU Guo-jun. Nonlinear combinatorial resonance and bifurcation of composite laminates[J]. Journal of Composites, 2010, 27(2): 176-182.
[8] 周承倜. 复合材料叠层板的非线性动力稳定性理论[J]. 应用数学和力学, 1991, 12(2): 101-108.
     ZHOU Cheng-ti. Nonlinear dynamic stability of composite laminates[J]. Applied Mathematics and Mechanics, 1991, 12(2): 101-108.
[9] 王列东, 刘正宁, 周承倜. 初始缺陷和拉伸-弯曲耦合对于叠层板的振动、屈曲、和非线性动力稳定性的影响[J]. 应用数学和力学, 1999, 20(5): 477-485.
     WANG Lie-dong, LIU Zheng-ning, ZHOU Cheng-ti. Effects of initial imperfection and tension-bending coupling on the vibration, buckling and nonlinear dynamic stability of laminated plates[J]. Applied Mathematics and Mechanics 1999, 20(5): 477-485.
[10] 魏德敏, 杨桂通. 复合材料叠层板的非线性动力稳定性[J]. 应用数学和力学, 2004, 25(7): 1113-1116.
     WEI De-min, YANG Gui-tong. Nonlinear dynamic stability of composite laminates[J]. Applied Mathematics and Mechanics, 2004, 25(7): 1113-1116.
[11] BANICHUK N, JERONEN J, NEITTAANM K P, et al. On the instability of an axially moving elastic plate[J].International Journal of Solids and Structures, 2010, 47(1): 91-99.
[12] 胡宇达. 轴向运动导电薄板磁弹性耦合动力学理论模型[J]. 固体力学学报, 2013, 34(4): 417-425.
     HU Yu-da. A theoretical model of magneto-elastic coupling dynamics of an axially moving conductor[J]. Journal of Solid Mechanics, 2013, 34(4): 417-425.
[13] HU Y D, HU P, ZHANG J Z. Strongly Nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(2): 021010.
[14] GHAYESH M H, AMABILI M, PAIDOUSSIS M P. Nonlinear dynamics of axially moving plates[J]. Journal of Sound&Vibration, 2013, 332(2): 391-406.
[15] ZHANG H, MA J, DING H, et al. Vibration of axially moving beam supported by viscoelastic foundation[J]. Applied Mathematics and Mechanics, 2017, 38(2): 161-172.

PDF(3040 KB)

495

Accesses

0

Citation

Detail

段落导航
相关文章

/