非零奇异值数量的理论分析及其在滑动轴承-转子振动特征提取应用

杨期江1,赵学智2,汤雅连3,李伟光2,滕宪斌1,郭明军1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 17-26.

PDF(1184 KB)
PDF(1184 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 17-26.
论文

非零奇异值数量的理论分析及其在滑动轴承-转子振动特征提取应用

  • 杨期江1,赵学智2,汤雅连3,李伟光2,滕宪斌1,郭明军1
作者信息 +

Theoretical analysis for number of non-zero singular values and its application in vibration feature extraction of a sliding bearing-rotor system

  • YANG Qijiang1,ZHAO Xuezhi2,TANG Yalian1,LI Weiguang2,TENG Xianbin1, GUO Mingjun1
Author information +
文章历史 +

摘要

首先实验分析了Hankel矩阵下非零奇异值数目与信号中的频率个数成两倍的数量关系,验证了奇异值成对出现规律,当构造的m×n的Hankel矩阵行数与列数充分接近时,信号中同一频率下的两个非零奇异值会紧密排列在一起。根据Hankel矩阵的构造方式,从理论上证明了非零奇异值与频率之间的数量关系规律:对于一个含有固定频率数目的确定性信号,利用其构造m×n的 Hankel 矩阵,当矩阵维数大于信号中频率个数的两倍之后,非零奇异值数目始终是与频率个数成2倍的数量关系,且非零奇异值数目是与幅值和相位无关的。将Hankel矩阵下非零奇异值的这一规律应用于旋转机械中的滑动轴承-转子振动信号的特征提取,实现了对转子不对中故障轴心轨迹的准确提纯。

Abstract

Here, firstly the quantitative relation that the number of non-zero singular values of Hankel matrix is 2 times of the number of frequencies in a signal was analyzed with tests.It was shown that the law that singular values appear in pairs is verified; when the number of rows and that of columns in a m×n Hankel matrix are sufficiently close, two non-zero singular values corresponding to one frequency in a signal are closely spaced; according to the construction mode of Hankel matrix, the quantitative relation between its non-zero singular values and frequencies in a signal is theoretically proved, this relation is that using a deterministic signal with a fixed number of frequencies, a m×n Hankel matrix is constructed, after the matrix’s dimensions are more than twice the number of frequencies in the signal, the number of non-zero singular values is always 2 times of the number of frequencies, the former is unrelated to the signal’s amplitude and phase.This relation law was applied in vibration feature extraction for a sliding bearing-rotor system to realize correct extraction of a rotor axial center’s misalignment fault trajectory.

关键词

奇异值分解(SVD) / 非零奇异值 / 数量规律 / 特征提取

Key words

Singular value decomposition(SVD) / non-zero singular value / number law / feature extraction

引用本文

导出引用
杨期江1,赵学智2,汤雅连3,李伟光2,滕宪斌1,郭明军1. 非零奇异值数量的理论分析及其在滑动轴承-转子振动特征提取应用[J]. 振动与冲击, 2019, 38(15): 17-26
YANG Qijiang1,ZHAO Xuezhi2,TANG Yalian1,LI Weiguang2,TENG Xianbin1, GUO Mingjun1. Theoretical analysis for number of non-zero singular values and its application in vibration feature extraction of a sliding bearing-rotor system[J]. Journal of Vibration and Shock, 2019, 38(15): 17-26

参考文献

[1] 赵学智, 陈统坚, 叶邦彦. 奇异值分解对连续Morlet小波变换的压缩和提纯[J]. 机械工程学报, 2015, 51(16):57-70.
Zhao X, Chen T, Ye B. Purification and compression of continuous morlet wavelet transform based on singular value decomposition[J]. Journal of Mechanical Engineering, 2015, 26(1):7-13.
[2] 王建国, 李健, 刘颖源. 一种确定奇异值分解降噪有效秩阶次的改进方法[J]. 振动与冲击, 2014, 33(12):176-180.
Wang J G, Li J, Liu Y Y. An improved method for determining effective order rank of SVD denoising[J]. Journal of Vibration & Shock, 2014.
[3] 张永祥, 王孝霖, 张帅,等. 基于奇异值分解和相关峭度的滚动轴承故障诊断方法研究[J]. 振动与冲击, 2014, 33(11):167-171.
Zhang Y X, Wang X L, Zhang S, et al. Rolling element bearing fault diagnosis based on singular value decomposition and correlated kurtosis[J]. Journal of Vibration & Shock, 2014, 33(11):167-171.
[4] Jiang H, Chen J, Dong G, et al. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems & Signal Processing, 2015, s 52–53(1):338-359.
[5] Zhao M, Jia X. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery[J]. Mechanical Systems & Signal Processing, 2017, 94:129-147.
[6] 赵学智, 叶邦彦. SVD和小波变换的信号处理效果相似性及其机理分析[J].电子学报. 2008, 36(8): 1582-1589.
Zhao Xue-zhi, Ye Bang-yan. The similarity of signal processing effect between SVD and wavelet transform and its mechanism analysis [J]. Acta Electronica Sinica,2008,36( 8) : 1582-1589. ( in Chinese)
[7] Demené C, Deffieux T, Pernot M, et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity[J]. IEEE Transactions on Medical Imaging, 2015, 34(11):2271-2285.
[8] Yang W X, Tse P W. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition[J]. Ndt & E International, 2003, 36(6):419-432.
[9] 赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100一108.
Zhao Xuezhi,Ye Bangyan,Chen Tongjian.Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe [J].Journal of Mechanical Engineering, 2010,46(1):100-108.
[10] 钱征文, 程礼, 李应红. 利用奇异值分解的信号降噪方法 [J]. 振动、测试与诊断, 2011, 31(4):459-463.
Qian Z, Li C, Li Y. Noise Reduction Method Based on Singular Value Decomposition[J]. Journal of Vibration Measurement & Diagnosis, 2011, 31(4):459-463.
[11] 赵学智, 叶邦彦. 非零奇异值和频率的关系及其在信号分解中的应用[J]. 电子学报, 2017(8).
Zhao X Z, Bang-Yan Y E. The Relationship Between Non-Zero Singular Values and Frequencies and Its Application to Signal Decomposition[J]. Acta Electronica Sinica, 2017, 45(8):2008-2018.
[12] 赵学智, 聂振国, 叶邦彦,等. 信号有效奇异值的数量规律及其在特征提取中的应用[J]. 振动工程学报, 2016, 29(3):532-541.
Zhao X Z, Nie Z G, Bang-Yan Y E, et al. Number law of effective singular values of signal and its application to feature extraction[J]. Journal of Vibration Engineering, 2016.
[13] 郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21):21-26.
Zheng J D, Cheng J S, Yang Y. Modified EEMD algorithm and its applications[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2013, 32(21):21-26+46.

PDF(1184 KB)

Accesses

Citation

Detail

段落导航
相关文章

/