磁流变阻尼器的自适应时滞补偿实时混合试验

王贞1,2,3,王纯鹏1,2,3,吴斌1,2,3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 190-195.

PDF(1659 KB)
PDF(1659 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 190-195.
论文

磁流变阻尼器的自适应时滞补偿实时混合试验

  • 王贞1,2,3,王纯鹏1,2,3,吴斌1,2,3
作者信息 +

Adaptive Delay Compensation for Real-time Hybrid Testing of the Magnetorheological Fluid Damper

  • WANG Zhen1,2,3, WANG Chunpeng1,2,3, WU Bin1,2,3
Author information +
文章历史 +

摘要

时滞及补偿问题是实时混合试验的核心问题。在磁流变阻尼器的实时混合试验系统中,磁流变阻尼器的强非线性导致加载系统时滞波动,适用于定时滞系统的常规时滞补偿方法的补偿效果不够理想。本文针对此类问题,采用基于模型参数识别的自适应时滞补偿方法开展实时混合试验。本文首先阐述了该方法的原理,并通过磁流变阻尼器实时混合试验的数值模拟及真实试验验证了方法的有效性。

Abstract

Time delay and its compensation are key problems for real-time hybrid tests (RHT).In a RHT system of MR dampers, the strong nonlinearity of MR damper causes time delay fluctuation of its loading system, the compensation effect of conventional time delay compensation methods for constant time delay systems is not enough ideal.Here, to solve this problem, an adaptive time delay compensation method based on model parameter identification was used to conduct RHT.Firstly, the principle of this method was presented.Then, numerical simulation for RHT of MR dampers and actual tests were conducted to verify the effectiveness of the adaptive time delay compensation method.

关键词

实时混合试验 / 时滞补偿 / 磁流变阻尼器 / 自适应 / 离散模型

Key words

Real-time Hybrid Testing / Delay Compensation / Magnetorheological Fluid Damper / Adaptive / Discrete Model

引用本文

导出引用
王贞1,2,3,王纯鹏1,2,3,吴斌1,2,3. 磁流变阻尼器的自适应时滞补偿实时混合试验[J]. 振动与冲击, 2019, 38(15): 190-195
WANG Zhen1,2,3, WANG Chunpeng1,2,3, WU Bin1,2,3. Adaptive Delay Compensation for Real-time Hybrid Testing of the Magnetorheological Fluid Damper[J]. Journal of Vibration and Shock, 2019, 38(15): 190-195

参考文献

[1] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic Testing[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79-92.
[2] Darby AP, Williams MS, Blakeborough A. Stability and delay compensation for real-time substructure testing[J]. Journal of Engineering Mechanics, 2002, 128(12): 1276–1284.
[3] 王倩颖. 实时子结构试验方法及其应用[D]. 哈尔滨: 哈尔滨工业大学, 2007: 44-86.
Wang Qianying. Real-time substructure testing method and its application[D]. Harbin: Harbin Institute of Technology, 2007: 44-86. (in Chinese)
[4] Mercan O, Ricles J M. Stability analysis for real-time pseudo dynamic and hybrid pseudodynamic testing with multiple sources of delay[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(10): 1269-1293.
[5] Horiuchi T, Inoue M, Konno T, et al. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(10): 1121-1141.
[6] Horiuchi T, Konno T. A new method for compensating actuator delay in real-time hybrid experiments[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2001, 359(1786):1893-1909.
[7] Bonnet P A. The development of multi-axis real-time substructure testing[D]. Oxford: University of Oxford, 2006.
[8] 欧进萍. 结构振动控制: 主动、半主动与智能控制[M]. 北京: 科学出版社, 2003.
Ou Jinping. Structural vibration control: active, semi active and intelligent control [M]. Beijing: Science Press, 2003. (in Chinese)
[9] 史鹏飞. 磁流变阻尼器的拟负刚度控制及实时混合试验方法[D]. 哈尔滨: 哈尔滨工业大学, 2011:17-60.
 Shi Pengfei. Pseudo-negative stiffness control and real-time hybrid testing of MR dampers[D]. Harbin: Harbin Institute of Technology, 2011:17-60. (in Chinese)
[10] Li H, Wang J. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers[J]. Smart Materials & Structures, 2011, 20(8):085026.
[11] Cha Y J, Zhang J, Agrawal A K, et al. Comparative studies of semiactive control strategies for MR dampers: Pure Simulation and Real-Time Hybrid Tests[J]. Journal of Structural Engineering, 2013, 139(7):1237-1248.
[12] Friedman A, Dyke S J, Phillips B, et al. Large-scale real-Time hybrid simulation for evaluation of advanced damping system performance[J]. Journal of Structural Engineering, 2014, 141(6):04014150.
[13] Chen P C, Tsai K C, Lin P Y. Real‐time hybrid testing of a smart base isolation system[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(1):139-158.
[14] Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of actuator delay and dynamics for real-time hybrid structural simulation[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(1):21-42.
[15] Chae Y, Kazemibidokhti K, Ricles J M. Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(11):1697-1715.
[16] Wang Z, Wu B, Bursi OS, et al. An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation[J]. Smart Structures & Systems, 2014,14(6): 1247-1267.
[17] 王贞,李强,吴斌. 实时混合试验的自适应时滞补偿方法[J].工程力学, 2017.(已录用)
Wang Zhen, Li Qiang, Wu Bin. Adaptive delay compensation method for real-time hybrid testing[J]. Engineering Mechanics, 2017.(Accepted & in Chinese)
[18] 周锐,陈宗基. 自适应技术的理论及应用—控制、滤波、预报[M]. 北京: 北京航空航天大学出版社, 2013.
 Zhou Rui, Chen Zongji. Theory and applications of adaptive technique - control, filter, forecast[M]. Beijing: Beihang University Press, 2013.(in Chinese)
[19] 陈复扬,姜斌. 自适应控制与应用[M]. 北京: 国防工业出版社, 2009.
Chen Fuyang, Jiang Bin. Adaptive control and applications[M]. Beijing: National Defend Industry Press, 2009.(in Chinese)
[20] 庞中华. 系统辨识与自适应控制MATLAB仿真[M]. 北京: 北京航空航天大学出版社, 2009.
 Pang Zhonghua. Simulations of system identification and adaptive control using MATLAB[M], Beijing: Beihang University Press, 2009.(in Chinese)

PDF(1659 KB)

363

Accesses

0

Citation

Detail

段落导航
相关文章

/