基于弹性力学的端部有裂缝悬臂梁的自由振动分析

蒋杰,周叮,胡朝斌

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 196-201.

PDF(1220 KB)
PDF(1220 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 196-201.
论文

基于弹性力学的端部有裂缝悬臂梁的自由振动分析

  • 蒋杰,周叮,胡朝斌
作者信息 +

Free vibration of a cantilever beam with a crack at clamped end based on elasticity theory

  • JIANG Jie, ZHOU Ding, HU Chaobin
Author information +
文章历史 +

摘要

本文基于小变形的二维线弹性力学理论,采用Chebyshev-Ritz法分析端部有裂纹悬臂梁的自由振动特性。在裂缝尖端处将裂纹梁沿长度方向划分为不同边界条件的两层子梁,利用第一类切比雪夫多项式与边界特征函数的乘积作为每层子梁的位移试函数,通过利兹法分别求得每层子梁的振动方程,再根据上下层在交界面处的位移连续性条件得到整个裂缝梁的振动方程。数值结果与有限元解以及文献数据比较显示了很好的一致性,最后详细分析了高跨比、裂缝深度对无量纲自振频率和振型的影响。

Abstract

Here, based on the 2-D linear elasticity theory, free vibration characteristics of a cantilever beam with a crack at clamped end were analyzed using Chebyshev-Ritz method.Firstly, at crack tip along the beam length direction, the cracked beam was divided into two sub-beam layers with different boundary conditions.The 1st kind Chebyshev polynomials multiplied by boundary characteristic functions satisfying geometric boundary conditions were chosen as each sub-beam layer’s displacement trial functions.Ritz method was used to acquire vibration equations of two sub-beam layers, respectively.Then, utilizing the displacement continuity condition at the interface between two sub-beam layers, the whole beam’s vibration equation was derived.The numerical results were compared with those using the finite element method and available ones in literature, and it was shown that all of them agree well with each other.Finally, effects of height to span ratio and crack depth on non-dimensional natural frequencies and modal shapes were analyzed in detail.

关键词

二维线弹性理论 / 裂缝悬臂梁 / 自由振动 / Chebyshev-Ritz法

Key words

two-dimensional elasticity theory / cracked cantilever beam / free vibration / Chebyshev-Ritz method

引用本文

导出引用
蒋杰,周叮,胡朝斌. 基于弹性力学的端部有裂缝悬臂梁的自由振动分析[J]. 振动与冲击, 2019, 38(15): 196-201
JIANG Jie, ZHOU Ding, HU Chaobin. Free vibration of a cantilever beam with a crack at clamped end based on elasticity theory[J]. Journal of Vibration and Shock, 2019, 38(15): 196-201

参考文献

[1] Chondros T G, Dimarogonas A D. Identification of crack in welded joints of complex structure [J]. Journal of Sound and Vibration, 1980, 69(4):531-538.
[2] Bamnios G, Trochides A. Dynamic behavior of a cracked cantilever beam [J]. Applied Acoustic, 1995, 45:97-112.
[3] Yokoyama T, Chen M C. Vibration analysis of edge-cracked beams using a line-spring model [J]. Engineering Fracture Mechanics, 1998, 59(3):403-409.
[4] Shen M H H, Pierre C. Free vibrations of beams with a single-edge crack [J]. Journal of Sound and Vibration, 1994, 170(2):237-259.
[5] Chondros T G, Dimarogonas A D. Vibration of a cracked cantilever beam [J]. Journal of Vibration and Acoustics, 1998, 120(3):742-742.
[6] Ebrahimi A, Behzad M, Meghdari A. A continuous vibration theory for beams with a vertical edge crack [J]. Scientia Iranica, 2010, 17(3):194-204.
[7] 杨鄂川, 秦营, 赵翔等. 含轴向运动效应的裂纹梁横向振动频率研究[J]. 力学季刊, 2016(1):74-80.
YANG Echuan, QIN Ying, ZHAO Xiang, et al. Investigation on transversal vibration characteristics of cracked axially moving beams [J]. Chinese Quarterly of Mechanics, 2016(1):74-80.
[8] 杨鄂川, 李映辉, 赵翔等. 含旋转运动效应裂纹梁横向振动特性的研究[J]. 应用力学学报, 2017, 34(6):1160-1165. YANG Echuan, LI Yinghui, ZHAO Xiang, et al. Investigation on transversal vibration characteristics of a rotating beam with a crack [J]. Chinese Journal of Applied Mechanics, 2017, 34(6):1160-1165.
[9] Swamidas A S J, Seshadri R, Yang X. Identification of Cracking in Beam Structures Using Timoshenko and Euler Formulations [J]. Journal of Engineering Mechanics, 2004, 130(11):1297-1308.
[10] 徐福后, 张玉祥. 含裂纹Timoshenko梁自由振动分析[J]. 船舶力学, 2011, 15(10):1166-1172.
    XU Fu-hou, ZHANG Yu-xiang. Analysis of cracked Timoshenko beam under free vibration [J]. Journal of Ship Mechanics, 2011, 15(10):1166-1172.
[11] Liu J, Shao YM, Zhu WD. Free vibration analysis of a cantilever beam with a slant edge crack [J]. Mechanical Engineering Science, 2016, 231(5): 823-843.
[12] 马辉, 张文胜, 曾劲, 武爽. 非对称夹持的裂纹悬臂梁振动响应分析[J]. 振动与冲击, 2017, 36(12):37-42.
    MA Hui, ZHANG Wen-sheng, ZENG Jin, WU Shuang. Asymmetric gripper-induced vibration responses analysis for a cracked cantilever beam [J]. Journal of Vibration and Shock, 2017, 36(12):37-42.
[13] Zhou D, Cheung Y K, Au F T K, Lo S H. Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method [J]. International Journal of Solids and Structures, 2002, 39(26), 6339-6353.
[14] Zhou D, Lo S H. Three-dimensional free vibration analysis of doubly-curved shells [J]. Journal of Vibration and Control, 2015, 21(12):1-19.

PDF(1220 KB)

336

Accesses

0

Citation

Detail

段落导航
相关文章

/