利用Galfenol薄片的环境振动能量收集装置

刘慧芳1,2,刘成龙1,谷艳玲1,赵俊杰1,张靖1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 202-208.

PDF(2212 KB)
PDF(2212 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 202-208.
论文

利用Galfenol薄片的环境振动能量收集装置

  • 刘慧芳1,2,刘成龙1,谷艳玲1,赵俊杰1,张靖1
作者信息 +

An environmental vibration energy harvesting device using Galfenol slices

  • LIU Huifang1,2, LIU Chenglong1, GU Yanling1, ZHAO Junjie1, ZHANG jing1
Author information +
文章历史 +

摘要

针对小功耗电子设备供电的需求,本文拟对生活中存在的丰富振动能量进行利用,设计一种以Galfenol材料的磁致伸缩逆效应和法拉第电磁感应的耦合特性为实现原理,以薄片状Fe-Ga合金为核心元件,对振动进行收集并转换为电能的装置。以Jiles-Atherton磁化模型为基础,结合悬臂梁弯曲理论建立了振动能量收集装置的感应电压与应力及力和加速度间的数学关系模型;分析了振动薄片内部总应力与运动状态间的数学关系。实验表明该装置产生的电压幅值可达到201mv,并且在低频段发电效果最佳。研究成果为实现小功耗电子元件的无源供电提供一种新方法。

Abstract

In order to meet demands of current supply for electronic devices with low power consumption, abundant vibration energy existing in environment will be utilized by mankind.Here, taking the coupling property between Galfenol material’s magnetostrictive inverse effect and Faraday electromagnetic induction as the realizing principle and flaky Fe-Ga alloy as the core element, a vibrating energy collecting device to collect environment vibration energy and convert it into electric one was designed.Based on Jiles-Atherton magnetization model and the cantilever beam bending theory, a mathematical relation model among induced voltage, stress, force and acceleration was established to analyze the mathematical relation between the total internal stress in a vibrating strip and its motion state.Tests showed that the voltage amplitude generated by the device can reach 201mv, and the power generation effect is the best within a low frequency range; the study results provide a new method for

关键词

环境振动 / 能量收集 / Galfenol / 薄片

Key words

environmental vibration / energy harvesting / Galfenol / slice

引用本文

导出引用
刘慧芳1,2,刘成龙1,谷艳玲1,赵俊杰1,张靖1. 利用Galfenol薄片的环境振动能量收集装置[J]. 振动与冲击, 2019, 38(15): 202-208
LIU Huifang1,2, LIU Chenglong1, GU Yanling1, ZHAO Junjie1, ZHANG jing1. An environmental vibration energy harvesting device using Galfenol slices[J]. Journal of Vibration and Shock, 2019, 38(15): 202-208

参考文献

[1]Szarka G D,Stark B H, Burrow S G. Review of powerconditioning for kinetic energy harvesting systems[J]. IEEE Transactions on Power Electronics, 2012, 27(2):803-815.
[2]徐振龙,单小彪,谢涛. 宽频压电振动俘能器的研究现状综述[J].振动与冲击, 2018, 37(8): 190-199.
XU Zhenlong,SHAN Xiaobiao,XIE Tao. A review of broadband piezoelectric vibration  energy harvester. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(8): 190-199.
[3]P.D.Mitcheson,T.C.Green,E.M.Yeatman,A.S.Holmes,Architectures for vibration-driven micropower generators[J].Journal of Microelectromechanical Systems, 2004,13:429-440.
[4]S.P.Beeby,M.J.Tudor,N.M.White.Energy harvesting vibration sources for microsystems applications[J].MeasurementScience and Technology , 2006,17:175-195.
[5]Yang Zhaoshu, He Zhongbo, Li Dongwei, Xue Guangming,Cui Xu. Hydraulic amplifier design and its application to direct drive valve based on magnetostrictive actuator[J]. Sensors & Actuators: A. Physical,2014,216.
[6]Zhu Yuchuan,Li Yuesong. A hysteresis nonlinear model of giant magnetostrictive transducer[J]. Journal of Intelligent Material Systems and Structures,2015,26(16).
[7]陈龙,朱玉川,杨旭磊,徐鸿翔.超磁致伸缩泵驱动磁路建模及数值分析[J].中国机械工程,2014,25(06):718-722.
Chen Long, Zhu Yuchuan, Yang Xulei, Xu Hongxiang. Driving Magnetic Path Modeling and Numerical Analyses in Giant Magnetostrictive Pump [J]. China Mechanical Engineering, 2014,25 (06): 718-722.
 [8]Hui Fang Liu,Han Yu Wang,Yu Zhang. Research on the Application Status of Giant Magnetostrictive Material in Drive Field[J]. Applied Mechanics and Materials,2015,3830(733).
[9]吴义鹏,季宏丽,裘进浩,张浩.共振频率可调式非线性压电振动能量收集器[J].振动与冲击,2017,36(05):12-16+22.
WU Yi-peng,JI Hongli,QIU Jinhao,et al.A nonlinear resonant frequency tuning piezoelectric vibration energy harvesting device[J].Journal of Vibration and Shock,2017,36(5):12-16.
[10]J.K.Huang,R.C.O’Handley,D.Bono.High efficiency vibration energy harvester[J]. The Journal of the Acoustical Society of America,2007,121(1):14.
[11]BERBYUK V.Optimal design of magnetostrictive transducers for power harvesting from vibrations[C]//Proceedings of IMAC. Jacksonville,Florida,USA :Structural Dynamics and Renewable Energy,2010,199-210.
[12] Y00 J H.  A bending-mode galfenol electric power harvester[C]//Proceedings of ASME 2010 Conference on Smart Materials .Philadelphia, Pennsylvania, USA: Adaptive Structures and Intelligent Systems, 2010,681-686.
[13] 孙静.ANSYS有限元分析在压电泵研究中的应用[J].技术与教育,2009.
SUN Jing. Application of ANSYS Finite Element Analysis in Piezoelectric Pumps[J]. Technology and Education,2009.
 [14] 唐志峰,吕福在,项占琴.影响超磁致伸缩执行器中逆效应性能的主要因素[J].机械工程学报,2007.43(12):134-136.
TANG Zhi-feng,LV Fuzai,XIANG zhanqin. Major Factos Affecting Inverse Performance in Giant Magnetostrictive Actuators[J]. Journal of Mechanical Engineering, 2007.43(12):134-136.
[15] 樊长在,杨庆新,杨文荣,闫荣格,孙景峰,刘福贵. 基于磁致伸缩逆效应的超磁致伸缩力传感器[J].仪表技术与传感器,2007.4:4-7.
FAN Changzai,YANG Qingxin,YANG Wenrong,YAN Rongge,SUN Jingfeng,LIU Fugui. Giant Magnetostrictive Force Sensor Based on Magnetostrictive Inverse Effect[J] 2007.4:4-7.
[16] Shun Fujieda, Shigeru Suzuki, Akio Minato,etc.Growthof Fe-Ga Alloy Single Crystals by the Czochralski Method and Their Application to Vibration Power Generator[J].IEEE Transactions On Magnetics,2014 .50( 11) .
[17] 杨理华,李践飞,吴海平,楼京俊.超磁致伸缩作动器非线性模型辨识研究[J].振动与冲击,2015,34(18):142-146+
Yang Li-hua, Li Jianfei,Wu Haiping, Lou Jingjun. Researches on Parameter Identification of Nonlinear Model for Giant Magnetostrictive Actuator. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(18): 142-146.
[18] 李杨.用于振动检测的超磁致伸缩薄膜悬臂梁的制备、性能研究[D].南昌:南昌工程学院,2015.
LI Yang. Preparation and Properties of Giant Magnetostrictive Thin Films Cantilever for Vibration Detection[D].Nanchang: Nanchang Institute of Technology,2015.
[19] Hui fang Liu, Shi jie Wang, Yu Zhang,Wen guo Wang. Study on thegiant magnetostrictive vibration-power generation method for battery-lesstire pressuremonitoring system[J].Mechanical EngineeringScience,2015.229(9): 1639-1651.
[20] 刘鸿文.简明材料力学[M] .北京:高等教育出版社,1995:126-138.
LIU Hong-wen. Concise material mechanics[M] .Beijing: Higher Education Press, 1995:126-138.
[21] 郭健.悬臂梁式微加速度计的动力学分析[D]西安:长安大学,2014.
GUO Jian. Dynamic Analysis of Cantilever Micro Accelerometer[D]. Xi an: Chang An University, 2014.

PDF(2212 KB)

306

Accesses

0

Citation

Detail

段落导航
相关文章

/