注排液型砂轮平衡装置控制策略与实验研究

张西宁、刘旭、张雯雯、夏心锐

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 223-230.

PDF(2328 KB)
PDF(2328 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 223-230.
论文

注排液型砂轮平衡装置控制策略与实验研究

  • 张西宁、刘旭、张雯雯、夏心锐
作者信息 +

Control strategy and tests of balancing device for liquid injection and discharge type grinding wheel

  • ZHANG Xining, LIU Xu, ZHANG Wenwen, XIA Xinrui
Author information +
文章历史 +

摘要

为有效地解决砂轮失衡造成的磨床振动问题,介绍了一种新的注排液型砂轮平衡装置,为该平衡装置提供了一种液体控制策略,包括初次平衡进程和相位注液控制进程两部分。初次平衡进程根据系统初始值进行动平衡计算向平衡装置内注射液体,快速地将不平衡量降低到一个很小的值;相位注液控制进程通过设定目标振动值,根据砂轮失衡量的相位信息选择相应的注射腔,采用模糊PID控制器控制电磁阀进行多次微量注液,将不平衡量维持在一个很低的水平。砂轮动平衡实验结果表明,转速为2700 r/min时,采用此策略的注排液型平衡装置可以将不平衡振动快速、有效地降低到一个很低的水平,砂轮失衡造成的振动下降达89%,验证了提出策略的可行性和有效性。

Abstract

A new online balancing device of liquid injection and discharge type grinding wheel was introduced to reduce vibration caused by unbalance of grinding wheel.A new control strategy including initial balance process and phase liquid injection control one was proposed.In initial balance process, dynamic balance calculation was performed according to the system’s initial value, and some liquid was injected into the balancing device to rapidly reduce unbalance to a very small value.In phase liquid injection control process, a target vibration value was set up, phase information of grinding wheel’s unbalance was used to choose the corresponding injection chamber, and the electromagnetic valve was controlled using a fuzzy-PID controller to do micro-injection many times, and make unbalance value keep a very low level.Grinding wheel dynamic balance test results showed that the vibration caused by grinding wheel unbalance can be reduced by 88% at 2 700 r/min, the feasibility and effectiveness of the proposed strategy is verified.

关键词

砂轮 / 自动平衡 / 注排液型 / 控制策略

Key words

Grinding wheel / Active online balance / Liquid injection and dripping / Control strategy

引用本文

导出引用
张西宁、刘旭、张雯雯、夏心锐. 注排液型砂轮平衡装置控制策略与实验研究[J]. 振动与冲击, 2019, 38(15): 223-230
ZHANG Xining, LIU Xu, ZHANG Wenwen, XIA Xinrui. Control strategy and tests of balancing device for liquid injection and discharge type grinding wheel[J]. Journal of Vibration and Shock, 2019, 38(15): 223-230

参考文献

[1] 赵清亮,郭兵. 微结构光学功能元件模具的超精密磨削加工技术[J]. 机械工程学报,2011,47(21):177-185.
ZHAO Qing-liang, GUO Bing. Ultraprecision grinding technology of microstructured optical functional molds[J]. Journal of Mechanical Engineering, 2011, 47(21):177-185.
[2] Li Hao-nan, Axinte D. Textured grinding wheels: A review[J]. International Journal of Machine Tools and Manufacture, 2016, 109(1): 8-35.
[3] Liu J H, Pei Z J, Fisher G R. Grinding wheels for manufacturing of silicon wafers: A literature review[J]. International Journal of Machine Tools and Manufacture, 2007, 47(1): 1-13.
[4] 韩继光,王贵成. 精密磨床的砂轮自动平衡系统[J]. 徐州师范大学学报:自然科学版,2007,25(1):65-68.
HAN Ji-guang, WANG Gui-cheng. Auto-balancing system for grinding wheels of precision grinding machine[J]. Journal of Xuzhou Normal University: Natural Science Edition, 2007, 25(1):65-68.
[5] Zeng S, Wang X X. The influence of the electromagnetic balancing regulator on the rotor system[J]. Journal of Sound and Vibration, 1999, 219(1): 723-729.
[6] Fan H W, Jing M Q, Wang R C, et al. New electromagnetic ring balancer for active imbalance compensation of rotating machinery[J]. Journal of Sound and Vibration, 2014, 333(1): 3837-3858.
[7] DIONYS H. Apparatus for compensating for unbalance of a rotary body: USA, 4050195[P]. 1977-09-27.
[8] 章云,梅雪松,胡振邦等. 注液式高速切削主轴动平衡装置设计及其性能研究[J]. 西安交通大学学报,2013,47(3):13-17+23.
ZHANG Yun, MEI Xue-song, HU Zhen-bang, et al. Design and performance analysis of hydrojet-typed balancing device for high-speed machine tool spindle[J]. Journal of Xi’an Jiaotong University, 2013, 47(3): 13-17+23.
[9] 潘鑫,吴海琦,高金吉. 气压液体式磨床在线自动平衡装置结构设计与性能研究[J]. 振动与冲击,2014,33(23):20-23.
PAN Xin, WU Hai-qi, GAO Jin-ji. Structural design and performance analysis of a liquid-transfer active balancing device with pneumatic means for grinding machines[J]. Journal of Vibration and Shock, 2014, 33(23): 20-23.
[10] 潘鑫,吴海琦,高金吉. 气压液体式磨床自动平衡装置控制策略与实验研究[J]. 振动与冲击,2015,34(5):1-5.
PAN Xin, WU Hai-qi, GAO Jin-ji. Control strategy and experiment research on liquid-transfer active balancing device by pneumatic means for grinding machines [J]. Journal of Vibration and Shock, 2015, 34(5): 1-5.
[11] 贺世正. 释放液体式自动平衡头的研究[J]. 浙江大学学报:工学版,2001,35(4):70-74.
HE Shi-zheng. Study of liquid release auto-balancing head[J]. Journal of Zhejiang University: Engineering Science, 2001, 35(4): 70-74.
[12] 张西宁,刘旭,吴婷婷. 注排液式砂轮在线动平衡技术研究[J]. 西安交通大学学报,2017,51(4):1-5.
ZHANG Xi-ning, LIU Xu, WU Ting-ting. Liquid injection and drainage online dynamic balancing technique for grinding wheel[J]. Journal of Xi’an Jiaotong University, 2017, 51(04):1-5.
[13] 李可,刘旺开,王浚. 专家-模糊PID在低速风洞风速控制系统中的应用[J]. 北京航空航天大学学报,2007,33(12):1387-1390.
LI Ke, LIU Wang-kai, WANG Jun. Parameters self-tuning fuzzy-PID combined with expert control on wind velocity control system of wind tunnels at home[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1387-1390.
[14] 张恩勤,施颂椒,翁正新. 一类基于PID控制的新型模糊控制方法[J]. 上海交通大学学报,2000,34(5):630-634.
ZHANG En-qin, SHI Song-jiao, WENG Zheng-xin. New type of parameters-varying PID control based on fuzzy rules[J]. Journal of Shanghai Jiaotong University, 2000, 34(5): 630-634.

PDF(2328 KB)

243

Accesses

0

Citation

Detail

段落导航
相关文章

/