风力发电塔筒极端动力荷载作用下破坏的对比研究

戴靠山1,2,赵 志2,毛振西2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 252-257.

PDF(2292 KB)
PDF(2292 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 252-257.
论文

风力发电塔筒极端动力荷载作用下破坏的对比研究

  • 戴靠山1,2,赵 志2,毛振西2
作者信息 +

Failure of a wind turbine tower under extreme dynamic loads

  • DAI Kaoshan 1,2,ZHAO Zhi 1,MAO Zhenxi 1
Author information +
文章历史 +

摘要

为了研究和对比风力发电塔筒在极端动力荷载作用(风和地震)下的破坏模式,对于某典型风电塔通过ABAQUS建立考虑土-结构相互作用和叶片建模的精细有限元模型,开展了一系列非线性时程分析。风场由Turbsim软件人工生成,风荷载由风机设计软件FAST计算得到;地震选用适用于硬土场地的典型记录。分析结果表明,塑性铰大部分出现在塔筒几何非连续处,一旦局部全截面塑性铰稳定出现,即面临倒塌。在强风下,风速的能量在风电塔低频分布较高,塔筒受基本模态控制,在底部出现全截面塑性铰和倒塌;在强震下,地震动的能量在风电塔高频也分布较高,塔筒受高阶模态影响,虽然塑性铰首先在底部出现,但全截面塑性铰与倒塌位置在中部或上部,并且不同的天然地震动可能导致不同的倒塌位置。

Abstract

In order to study and compare failure modes of a wind turbine tower under extreme dynamic loads including wind and seismic loads, a series of nonlinear dynamic time history analyses were performed using a precision finite element model of a typical wind turbine tower built with the software ABAQUS and considering soil-structure interaction and blade modelling.Wind fields were generated using the software Turbsim and wind loads were calculated using the software FAST.The typical ground motion records were selected to be suitable for sites of hard soil.Analysis results showed that most plastic hinges occur at its geometric discontinuous points and the tower faces collapse once a local full-section plastic hinge stably appears; under strong wind, wind energy is concentrated in a lower frequency band, the tower is controlled by its fundamental mode and collapse occurs at its bottom; under strong earthquakes, ground motion energy is concentrated in a higher frequency band, the tower is affected by its higher modes; although plastic hinges firstly appear at its bottom, full-section plastic hinge and collapse are located at the tower’s middle or upper part, and different natural ground motions may cause different collapse positions.

关键词

风力发电塔筒 / 极端荷载 / 非线性时程分析 / 倒塌模拟

Key words

 wind turbine tower / extreme load / nonlinear time history analysis / collapse simulation

引用本文

导出引用
戴靠山1,2,赵 志2,毛振西2. 风力发电塔筒极端动力荷载作用下破坏的对比研究[J]. 振动与冲击, 2019, 38(15): 252-257
DAI Kaoshan 1,2,ZHAO Zhi 1,MAO Zhenxi 1. Failure of a wind turbine tower under extreme dynamic loads[J]. Journal of Vibration and Shock, 2019, 38(15): 252-257

参考文献

[1] World Wind Energy Association (WWEA). Wind power capacity reaches 539 GW, 52.6 GW added in 2017 [EB/OL]. http://www.wwindea.org/2017-statistics/ (2018-2-12) [2017-3-2].
[2] Chen X, Xu J. Structural failure analysis of wind turbines impacted by super typhoon Usagi [J]. Engineering Failure Analysis, 2016, 60: 391-404.
[3] Chen X, Li C, Xu J. Failure investigation on a coastal wind farm damaged by super typhoon: a forensic engineering study [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147: 132-142.
[4] Katsanos E I, Thöns S, Georgakis C T. Wind turbines and seismic hazard a state-of-the-art review [J]. Wind Energy, 2016, 19:2113-2133.
[5] 胡聿贤, 地震工程学 [M]. 北京: 地震出版社, 2006.
Hu Y. Earthquake engineering [M]. Beijing: Seismological Press, 2006.
[6] Dyrbey C, Hansen S O. Wind loads on structures [M]. UK: John Wiley & Sons, 1997.
[7] Mardfekri M, Gardoni P. Multi-hazard reliability assessment of offshore wind turbines [J]. Wind Energy, 2015, 18: 1433-1450.
[8] Sadowski A J, Camara A, Málaga-chuquitaype C, et al. Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections [J]. Earthquake Engineering & Structural Dynamics, 2017, 46: 201-219.
[9] Dai K, Sheng C, Zhao Z, et al. Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds [J]. Wind and Structures, 2017, 25(1): 79-100.
[10] Nuta E, Christopoulos C, Packer J A. Methodology for seismic risk assessment for tubular steel wind turbine towers: application to Canadian seismic environment [J]. Canadian Journal of Civil Engineering, 2011, 38: 293-304.
[11] Malcolm D J, Hansen A C. WindPACT turbine rotor design study [R]. NREL/SR-500-32495, Cole Boulevard, Golden, Colorado: National Renewable Energy Laboratory, 2006.
[12] Valamanesh V, Myers A T. Aerodynamic damping and seismic response of horizontal axis wind turbine towers [J]. Journal of Structural Engineering, 2014, 140(11): 04014090.
[13] Wolf J P. Spring-dashpot-mass models for foundation vibration [J]. Earthquake Engineering & Structural Dynamics, 1997, 26: 931-949.
[14] Kelley N, Jonkman B. Turbsim: a stochastic, full-field, turbulence simulator primarily for use with InflowWind/AeroDyn-based simulation tools [EB/OL]. https://nwtc.nrel.gov/TurbSim. (2016-6-14) [2017-5-26].
[15] International Electrotechnical Commission (IEC). IEC61400-1 wind turbines—part 1: design requirement [S]. Geneva: International Electrotechnical Commission, 2005.
[16] Jonkman J. FAST v8: an aeroelastic computer-aided engineering (CAE) tool for horizontal axis wind turbines [EB/OL]. https://nwtc.nrel.gov/FAST8. (2015-9-23) [2017-5-26].
[17] 戴靠山, 赵志, 易正翔, 等. 运转工况下风电塔抗震分析 [J]. 工程科学学报, 2017, 39(10): 1598-1605.
DAI Kaoshan, ZHAO Zhi, YI Zhengxiang, et al. Seismic analyses of wind turbine tower under operational conditions [J]. Chinese Journal of Engineering, 2017, 39(10): 1598-1605.
[18] 中华人民共和国住房和城乡建设部. GB50009—2012建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50009—2012 load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012.
[19] Ancheta T D, Darragh R B, Stewart J P, et al. PEER NGA-West2 Database [R]. PEER Report 2013/03, Berkeley: Pacific Earthquake Engineering Research Center, 2013.
[20] Dai K, Huang Y, Gong C, et al. Rapid seismic analysis methodology for in-service wind turbine towers [J]. Earthquake Engineering and Engineering Vibration, 2015, 14: 539-548.

PDF(2292 KB)

677

Accesses

0

Citation

Detail

段落导航
相关文章

/