风速时间序列模拟的模型有效性验证及代表性风场实例分析

马赛,褚福磊

振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 73-79.

PDF(819 KB)
PDF(819 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (15) : 73-79.
论文

风速时间序列模拟的模型有效性验证及代表性风场实例分析

  • 马赛,褚福磊
作者信息 +

Effectiveness verification of wind speed time series simulation models and typical wind field analysis

  • MA Sai, CHU Fulei
Author information +
文章历史 +

摘要

在风力发电场的合理选址以及风力发电机组的结构设计阶段,能量谱与功率谱模型对于风力发电机组的系统方案有着直接的影响,特别是在具体结构设计阶段选取恰当的功率谱模型是至关重要的,但目前对具体模型的选择依据尚不明确。针对能量谱与功率谱两种重要的风速数据分析模型,本文以国内五处地区代表性风场的全年风速测试数据为基础,进行了能量谱与功率谱的分析,从分析结果中得出了如下两个结论:(1)我国东南沿海地区风场的风力资源最为丰富,其有效风能密度区(200w/m2-400w/m2)持续时间最长;北部地区风场的风力资源也较为丰富,且在高风能密度区(>500 w/m2)具有一定优势;对于主要风力资源集中在低风能密度区(<200 w/m2)的部分地区风场,在风力发电设备选型时应该有针对性的进行结构设计,实现低速风力资源的高效利用。(2)对于具体风场的风速模型选择准则给出了实例验证与建议:Mann功率谱模型表现出与各风场实测数据良好的一致性,应该在进行结构设计时作为主要备选。

Abstract

In order to choose the suitable location of a wind farm and perform structural design of a wind turbine set, it is necessary to effectively evaluate the potential of a wind field and its energy level, and its energy spectrum model and power spectrum one have direct effects on the wind turbine set design.Selecting an appropriate power spectrum model is very important for the specific design scheme of wind turbine structure, and until now the model selection criteria are unclear.Here, aiming at the two important wind speed data analysis models of energy spectrum one and power spectrum one, the annual measured wind speed data from typical wind fields at domestic 5 areas were taken as a basis to do energy spectral analysis and power spectral one.The results showed that ① wind resources of wind fields in southeast areas of China are the most abundant, their effective wind energy density zones (200-400 W/m2) have the longest duration; wind resources of wind fields in north China are more abundant, and their high wind energy density zones (>500 W/m2) have a certain advantage; for wind fields in part areas where the main wind resources concentrate in the low wind energy density zones (<200 W/m2), the structure of wind power generating equipment should be designed with pertinence to realize high efficiency utilization of low speed wind resources; ② the wind speed model selection criterion for specific wind fields is validated with examples and analyses give the suggestion that the simulation results using Mann power spectrum model agree well with the measured data of all wind fields, and this model should be the main option in structural design.

关键词

风速时间序列 / 能量谱模型 / 功率谱模型 / 模型选择依据

Key words

Wind speed time series / Energy spectrum model / Power spectrum model / Selection criteria

引用本文

导出引用
马赛,褚福磊. 风速时间序列模拟的模型有效性验证及代表性风场实例分析[J]. 振动与冲击, 2019, 38(15): 73-79
MA Sai, CHU Fulei. Effectiveness verification of wind speed time series simulation models and typical wind field analysis[J]. Journal of Vibration and Shock, 2019, 38(15): 73-79

参考文献

[1]. 李泽椿,朱蓉,何晓凤,等. 风能资源评估技术方法研究[J]. 气象学报, 2007, 65(5):708-717.
Li Zechun,Zhu Rong,He Xiaofeng,et al.Study on the assessment technology of wind energy resource[j]. Acta Meteorologica Sinica,2007,65(5):708-717(in Chinese).
[2]. Masseran N, Razali A M, Ibrahim K. An analysis of wind power density derived from several wind speed density functions: The regional assessment on wind power in Malaysia[J]. Renewable & Sustainable Energy Reviews, 2012, 16(8):6476–6487.
[3]. 冯宾春, 邢占清. 风资源评估中的关键问题评述[J]. 水利水电技术, 2009, 40(9):46-49.
Feng Binchun, Xing Zhanqing. Comments on key issues of wind resource assessment[J]. Water Resources and Hydropower Engineering, 2009, 40(9): 46-49(in Chinese).
[4]. Masseran N. Evaluating wind power density models and their statistical properties[J]. Energy, 2015, 84:533-541.
[5]. 吉平, 周孝信, 武守远. 采用平均风速参与因子法的区域风资源评估[J]. 中国电机工程学报, 2012, 32(19):10-15.
Ji Ping, Zhou Xiaoxin, Wu Shouyuan. A Regional Wind Energy Assessment Approach Using Average Wind Speed Participation Factor[J]. Proceedings of the CSEE, 2012, 32(19):10-15(in Chinese).
[6]. 阎启, 谢强, 李杰. 风场长期观测与数据分析[J]. 建筑科学与工程学报, 2009, 26(1):37-42.
Yan Qi, Xie Qiang, Li Jie. Long-turm observation and data analysis of wind field [J]. Journal of Architecture and Civil Engineering, 2009, 26(1): 37-42.
[7]. 李锦华, 李春祥. 土木工程随机风场数值模拟研究的进展[J]. 振动与冲击, 2008, 27(9):116-125.
LI J, LI C. Development of numerical simulations for stochastic wind fields in civil engineering [J]. Journal of Vibration and Shock, 2008, 9: 030.
[8]. 章子华, 王振宇, 刘国华. 风电场脉动风模拟及风机塔架动力响应研究[J]. 太阳能学报, 2011, 32(7):992-998.
Zhang Z, Wang Z, Liu G. Simulation of fluctuating wind in wind farm and dynamic response of wind turbine tower[J]. Acta Energiae Solaris Sinica, 2011, 32(7):992-998.
[9]. 张兴, 滕飞, 谢震,等. 风力机的风剪塔影模拟及功率脉动抑制[J]. 中国电机工程学报, 2014, 34(36):6506-6514.
Xing Z, Fei T, Zhen X, et al. The Simulation and Power Pulsation Suppression of Wind Turbines With Wind Shear and Tower Shadow Effects[J]. Proceedings of the Csee, 2014, 34(36):6506-6514.
[10]. 田玉基, 杨庆山, 杨娜,等. 北京气象塔湍流风速谱的统计模型[J]. 中国科学:技术科学, 2011(11):1460-1468.
Tian Y J, Yang Q S, Yang N, et al. Statistical spectrum model of wind velocity at Beijing Meteorological Tower. Science China Technology Science,2011,54: 2869-2877.
[11]. 李炬, 曹晓彦, 程志刚,等. 京津冀城市群地区夏季低层大气风速谱特征分析[J]. 地球物理学报, 2016, 59(5):1553-1565.
Ju L I, Cao X Y, Cheng Z G, et al. Analysis of spectral characteristics for wind velocity in the low layer of the atmosphere in the Beijing-Tianjin-Hebei city cluster area during summer[J]. Chinese Journal of Geophysics, 2016.
[12]. 黄鹏, 戴银桃, 王旭,等. 上海沿海地区近地风脉动风速谱及相干性研究[J]. 工程力学, 2014, 31(4):126-133.
Peng H, Dai Y T, Xu W, et al. Field measurement on power spectra and coherence characteristics of near-ground wind in shanghai coastal area[J]. Engineering Mechanics, 2014, 31(4):126-133.
[13]. Feijóo A, Villanueva D. Assessing wind speed simulation methods [J]. Renewable & Sustainable Energy Reviews, 2016, 56:473-483.
[14]. Pishgar-Komleh S H, Keyhani A, Sefeedpari P. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)[J]. Renewable & Sustainable Energy Reviews, 2015, 42:313-322.
[15]. Dahbi M, Benatiallah A, Sellam M. The Analysis of Wind Power Potential in Sahara Site of Algeria-an Estimation Using the ‘Weibull’ Density Function ☆[J]. Energy Procedia, 2013, 36:179-188.
[16]. Bilir L, İmir M, Devrim Y, et al. Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function[J]. International Journal of Hydrogen Energy, 2015, 40(44):15301-15310.
[17]. Mohammadi K, Alavi O, Mostafaeipour A, et al. Assessing different parameters estimation methods of Weibull distribution to compute wind power density[J]. Energy Conversion & Management, 2015, 108:322-335.
[18]. 徐玉琴, 陈坤, 聂暘. 基于非参数核密度估计的风速短期相依模型[J]. 太阳能学报, 2017, 38(2):450-456.
Xu Y, Chen K, Nie Y. Temporal Time Dependence Model of Wind Speed Series based on Non-Parametric Kernel Density Estimation Method[J]. acta Energiae Solaris Sinica, 2017, 38(2):450-456.
[19]. Powell D C, Connell J R. Review of wind simulation methods for horizontal-axis wind turbine analysis[J]. Wind, 1986.
[20]. De Karman T, Howarth L. On the statistical theory of isotropic turbulence[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1938, 164(917): 192-215.
[21]. Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface‐layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
[22]. Davenport A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194-211.
[23]. Mann J. Wind field simulation[J]. Probabilistic Engineering Mechanics, 1998, 13(4):269-282.
[24]. Mann J. The spatial structure of neutral atmospheric surface-layer turbulence[J]. Journal of Fluid Mechanics, 1994, 273(273):141-168.
[25]. Van Kuik G A M, Peinke J, Nijssen R, et al. Long-term research challenges in wind energy–a research agenda by the European Academy of Wind Energy[J]. Wind Energy Science, 2016, 1:1-39.
[26]. Tian P C. Estimation of wind energy potential using different probability density functions[J]. Applied Energy, 2011, 88(5):1848-1856.
[27]. Carta J A, Ramírez P, Velázquez S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands [J]. Renewable & Sustainable Energy Reviews, 2009, 13(5):933-955.
[28]. Mathaba T, Mpholo M, Letuma M. Velocity and power density analysis of the wind at Letšeng-la-terae in Lesotho [J]. Renewable Energy, 2012, 46(46):210-217.
[29]. Villanueva D, Feijóo A. Wind power distributions: A review of their applications [J]. Renewable & Sustainable Energy Reviews, 2010, 14(5):1490-1495.
[30]. 赵文超, 廖明夫. Mann风湍流模型研究及修正[J]. 机械科学与技术, 2013, 32(7):982-986.
Zhao W, Liao M. Improving Turbulence Model of Mann Wind[J]. Mechanical Science & Technology for Aerospace Engineering, 2013, 32(7):982-986.

PDF(819 KB)

401

Accesses

0

Citation

Detail

段落导航
相关文章

/