本文针对超精密领域小负载隔振的新需求,基于正负刚度并联原理,采用永磁弹簧和橡胶带相结合的方法,永磁弹簧提供正刚度,橡胶带提供负刚度,提出了一种正负刚度并联永磁隔振器的新构型。为了研究该隔振器的隔振性能,通过实验与理论相结合的方法,建立了橡胶带拉力和刚度的数学模型,验证了橡胶带拉力解析模型的有效性。建立了正负刚度并联永磁隔振器的动力学方程,分析了该隔振器的隔振性能。搭建了永磁弹簧和正负刚度并联永磁隔振器实验台,分别进行隔振性能测试,实验结果表明该隔振器隔振性能的理论计算和实验测试的结果比较吻合,且具有良好的隔振性能。该隔振器最大特点在于其最大承载能力时,刚度最低,固有频率最低,低频隔振性能最好。
Abstract
In order to develop a new type of vibration isolator for a miniature instrument, a magnetic levitation vibration isolator (MLVI) with a permanent magnetic spring (PMS) in combination with rubber ligaments was proposed, in which, the magnetic spring provides the positive stiffness and the rubber ligament supplies the negative one.For studying the vibration isolation performance of the isolator, an analytical model of the stretched force of the rubber ligament was built and validated by an experiment, which proves that the analytical expression is efficient.Then an analytical expression of the stiffness of the rubber ligament was deduced by the derivative of the stretch force to the vertical deformation of the rubber ligament.As a case study of the isolator, the dynamic characteristic of the isolator was analyzed.A vibration isolator table was constructed to verify the vibration isolation performance of the isolator.The transmissibility curves of isolator were calculated and tested by the instrument.The experimental results show that there is a good agreement between the measured transmissibility and the calculated ones, which proves that the negative stiffness can partially offset the positive one.The main advantages of the isolator is when the load capacity of the isolator achieves the maximum value with the lowest stiffness, the isolator obtains the lowest natural frequency.Compared with the experimental data of the permanent magnet spring and the MLVI, it demonstrates that it is a valid method to explore the new MLVI.
关键词
正负刚度并联 /
永磁隔振器 /
低频 /
实验验证
{{custom_keyword}} /
Key words
The positive stiffness and the negative one in parallel /
Magnetic levitation vibration isolator /
Low frequency;Experiment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐登峰,朱煜,尤政等. 双腔室空气隔振器研究[J],振动与冲击, 2009,28(9): 168-170.
Xu Dengfeng, Zhu Yu, You Zheng et al, Performance analysis of dual-chamber pneumatic vibration isolator, Journal of Vibration and Shock, 2009,28(9): 168-170.
[2] Rostami A. Piecewise linear integrated optical device as an optical isolator using two part nonlinear ring resonators [J]. Optics & laser techonology, 2007, 39(5):1059-1065.
[3] Khatir A., Granpayeh N. Design and simulation of magneto –optic Mach-Zehnder isolator [J]. Optik, 2011, 122(24): 2199-2202.
[4] 郝慧荣,白鸿柏,张慧杰, 李冬伟,刘树峰. 六自由度主被动一体隔振平台的动力学实验建模[J]. 振动与冲击,2011, 30(11): 4-7.
Hao Hui-rong, Bai Hong-bai, Zhang Huijie, Li Dong-wei, Liu Shu-feng. Experiment dynamic modeling of 6-DOF active passive vibration isolation platform [J]. Journal of vibration and shock, 2011, 30(11): 4-7.
[5] 李强,徐登峰,刘昊等. 新型永磁的隔振性能分析与实验研究,振动与冲击,2013,32(13):6-12.
[6] Puppin E., Fratello V., Vibration isolation with magnet springs, Review of Scientific Instruments, 2002, 73(11):4034-4036.
[7] Zhu Y., Li Q., Xu D., et al. Modeling of axial magnetic force and stiffness of ring-shaped permanent passive vibration isolator and isolating experiment, IEEE Transactions on Magnetics, 2012, 48(7): 2228-2238.
[8] Robertson W., Cazzolato B., Zander A. Theoretical analysis of a non-contact spring with inclined permanent magnets for load- independent resonance frequency, Journal of Sound and Vibration, 2012, 331(6): 1331-1341.
[9] Platus D. L. Negative-stiffness-mechanism vibration isolation systems, In Proceeding of SPIE,Vibration Control in Microelectronics, Optics and Metrology, 1991: 45-54.
[10] Wu W.,Chen X., Shan Y. et al. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness, Journal of Sound and vibration, 2014,333(13):2958-2970.
[11] Palomares E., Nieto A.J., Morales A.L. et al, Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system, Journal of Sound and Vibration, 2018,414:31-44.
[12] Carrella A., Brennan M.J., Waters T.P., et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets, Journal of Sound and Vibration, 2008, 315(3): 712-720.
[13] Dong G., Zhang X., Xie S. et al. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring, Mechanical Systems & Signal Processing, 2017, 86:188-203.
[14] Zheng Y., Zhang X., Luo Y., Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness, Mechanical Systems and Signal Processing, 2018,100:135-151.
[15] Selvadurai A.P.S. Deflections of a rubber membrane. Journal of the Mechanics and Physics of Solids, 2006, 54(6): 1093-1119.
[16] 何春明,郑慕桥.测定橡胶Mooney-Rivlin模型常数的一种新方法,北京理工大学,1997,17(4): 142-146.
He Chunming, Zhen Muqiao. A new method to determine the Mooney-Rivlin material constants of rubber, Beijing Institute of Technology, 1997,17(4):142-146.
[17] Yonnet J P. Permanent magnet bearings and couplings. IEEE Transaction on. Magnetics. 1981, 17(1): 1169~1173.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}