研究考虑主轴旋转和内、外阻的镗杆颤振稳定性。将镗杆简化为二自由度模型,引入旋转陀螺和离心力以及内、外阻,结合再生时滞镗削力模型,建立旋转镗杆的颤振的动力学分析模型。采用频域法导出旋转镗杆切削系统的稳定性极限的求解公式。与时域数值积分结果的一致性验证了镗削稳定性叶瓣图计算结果的正确性。结果表明,旋转陀螺效应降低了镗削过程的临界切削深度。内、外阻之和越大,切削临界切削深度越大,在内、外阻之和给定时,内阻越大切削过程越稳定。同时提高镗杆的刚度和系统切削刚度将会分别导致临界切削深度的增加和减小。
Abstract
The chatter stability of boring bar considering spindle rotation and internal and external damping was studied.The boring bar was simplified as a two-degree-of-freedom model.The dynamic analysis model of the chatter of the rotary boring bar was established by introducing the rotating gyroscope, centrifugal force, internal and external damping, and combining with the regenerative time-delay boring force model.The formula for calculating the stability limit of the rotary boring bar cutting system was derived by a frequency domain method.The numerical integration results in the time domain verifies the correctness of the results of stability lobe diagram for boring.The results show that the rotary gyro effect reduces the critical cutting depth in the boring process.The greater the sum of internal and external damping, the greater the critical cutting depth, the more stable the cutting process.When the sum of internal and external damping is given, the greater of internal damping, also the more stable the cutting process.Increasing the rigidity of the boring bar and the system cutting rigidity will lead to the increase and decrease of the critical cutting depth, respectively.
关键词
镗削 /
颤振 /
稳定性预测 /
陀螺效应 /
内阻与外阻
{{custom_keyword}} /
Key words
Boring /
chatter /
stability prediction /
gyroscopic effect /
internal and external damping
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Altintas Y, Budak E. Analytical prediction of stability lobes in milling[J]. CIRP Annals Manufacturing Technology, 1995, 44(1): 357-362.
[2] Altintas Y, Stepan G, Merdol D, Dombovari Z. Chatter stability of milling in frequency and discrete time domain[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(1):
35-44.
[3] Mosaddegh P, Movahhedy M R. A study of gyroscopic effects on stability of high speed milling[C]. ASME International Mechanical Engineering Congress & Exposition, 2005 :659-665.
[4] Movahhedy M R, Mosaddegh P. Prediction of chatter in high speed milling including gyroscopic effects[J]. International Journal of Machine Tools and Manufacture, 2005, 46(9):
996-1001.
[5] Arvajeh T, Ismail F. Machining stability in high-speed drilling - Part 1: Modeling vibration stability in bending[J]. International Journal of Machine Tools and Manufacture, 2005, 46(12):1563-1572.
[6] Roukema J C, Altintas Y. Generalized modeling of drilling vibrations - Part I: Time domain model of drilling kinematics,dynamics and hole formation[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9):1455-1473.
[7] Roukema J C, Altintas Y. Generalized modeling of drilling vibrations - Part II: Chatter stability in frequency domain[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9):1474-1483.
[8] Atabey F, Lazoglu I, Altintas Y. Mechanics of boring processes - Part I[J]. International Journal of Machine Tools and Manufacture, 2003, 43(5):463-476.
[9] Atabey F, Lazoglu I, Altintas Y. Mechanics of boring processes - Part II: multi-insert boring heads[J]. International Journal of Machine Tools and Manufacture, 2003, 43(5):477-484.
[10] Ozlu E, Budak E. Analytical modeling of chatter stability in turning and boring operations - part II: experimental verification[J]. Manufacturing Science and Engineering, 2007, 129:726-732.
[11] Yussefian N Z, Moetakef-Imani B, El-Mounayri H. The prediction of cutting force for boring process[J]. International Journal of Machine Tools and Manufacture, 2008,48(12):1387-1394.
[12] Yussefian N Z, Moetakef-Imani B. Dynamic simulation of boring process[J]. International Journal of Machine Tools and Manufacture, 2009, 49(14):1096-1103.
[13] 石建飞. 动力减振镗杆系统的非线性动力学特性研究[D]. 兰州: 兰州交通大学, 2017.
SHI Jian-fei. Study on nonlinear dynamic characteristics of dynamic damping boring bar
System [D]. Lan Zhou: Lanzhou Jiaotong University, 2017.
[14] Pratt J R, Nayfeh A H. Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 359(1781):759-792.
[15] Baker J R, Rouch K E. Stability analysis of boring bars with asymmetry[J]. Machining Science and Technology, 2002, 6(1):81-95.
[16] Parsian A. Stability prediction of multiple teeth boring operations[D]. Sweden:Department of Mechanical Engineering Blekinge Institute of Technology Karlskrona, 2013.
[17] Fallah M, Moetakefimani B. Analytical prediction of stability lobes for passively damped boring bars[J]. Journal of Mechanics, 2017, 33(5):641-654.
[18] Selmi J, Lorong P, Costes J P, et al. Prediction of stability in boring using a multistep tool[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8):1077-1088.
[19] 庄润雨. 镗杆动态稳定性与动力学模型的研究[D]. 石家庄: 石家庄铁道大学, 2016.
ZHUANG Run-yu. The study of dynamic stability and model of boring bar[D]. Shi Jiazhuang: Shi Jiazhuang Tiedao University, 2016.
[20] Li C J, Ulsoy A G, Endres W J. The effect of flexible-tool rotation on regenerative instability in machining[J]. Journal of Manufacturing Science and Engineering, 2003, 125 (1):39-47.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}