基于多尺度递归图理论的桥梁微弱信号非线性非平稳检验

张二华1,2,单德山2,李乔2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 123-128.

PDF(2219 KB)
PDF(2219 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 123-128.
论文

基于多尺度递归图理论的桥梁微弱信号非线性非平稳检验

  • 张二华1,2,单德山2,李乔2
作者信息 +

Nonlinear and nonstationary detection of weak bridge signals based on the multiscale recurrence plot theory

  • ZHANG Erhua1,2  SHAN Deshan2  LI Qiao2
Author information +
文章历史 +

摘要

针对恶劣测试环境下桥梁结构微弱动力测试信号易被噪声淹没、非线性非平稳检验困难的问题,将改进的经验模态分解方法与递归图理论相结合,提出一种多尺度非线性非平稳检验分析方法。对微弱信号进行自适应分解,得到各阶信号分量。采用递归图及递归量化方法,分析了不同信号分量的非线性非平稳特征信息。分别用模拟信号和实际桥梁测试信号对所提方法的有效性进行了验证。结果表明:多尺度的非线性非平稳检验分析方法能有效提取强噪声背景下桥梁微弱信号的非线性非平稳特征信息,可用于实际桥梁测试信号的非线性非平稳检测。

Abstract

In order to solve the problem that the weak dynamic test signals of bridge structure are easily submerged in noise and the non-linearity and non-stationarity are difficult to test, a new multiscale nonlinear and non-stationary detection analysis method was proposed by combining the improved empirical mode decomposition method and the recurrence plot theory.The weak signals were adaptively decomposed, and then each signal component was obtained.The nonlinear and non-stationary characteristic information of each signal component was analyzed by recurrence plots and recursive quantization analysis methods.The validity of the proposed method was verified by both the simulated signal and testing signal from real bridge structures.The results show that the multiscale nonlinear and non-stationary detection analysis method can effectively extract the nonlinear and non-stationary feature information from weak signals of bridges in strong noise environment and can be used for nonlinear and non-stationary detection of test signals from real bridges.

关键词

桥梁 / 非平稳 / 非线性 / 检测 / 递归图 / 递归量化分析

Key words

bridge / non-stationarity / nonlinearity / detection / recurrence plot / recurrence quantification analysis

引用本文

导出引用
张二华1,2,单德山2,李乔2. 基于多尺度递归图理论的桥梁微弱信号非线性非平稳检验[J]. 振动与冲击, 2019, 38(16): 123-128
ZHANG Erhua1,2 SHAN Deshan2 LI Qiao2. Nonlinear and nonstationary detection of weak bridge signals based on the multiscale recurrence plot theory[J]. Journal of Vibration and Shock, 2019, 38(16): 123-128

参考文献

[1] Amezquita-Sanchez J P, Adeli, H. Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures[J]. Archives of Computational Methods in Engineering. 2016,23(1):1-15.
[2] Goyal D, Pabla B S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review [J]. Archives of Computational Methods in Engineering, 2016, 23(4):585-594.
[3] Eckmann J P, Kamphorst S O, Ruelle D. Recurrence Plots of Dynamical Systems [J]. Epl, 1987, 4(9):973-977.
[4] Zbilut J P, Jr C L W. Embeddings and delays as derived from quantification of recurrence plots [J]. Physics Letters A, 1992, 171(3-4):199-203.
[5] Marwan N, Romano M C, Thiel M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5–6):237-329.
[6] 邵亚会, 侯俊勇, 葛耀君,等. 基于递归图理论的飓风信号非平稳特征定量分析[J]. 同济大学学报(自然科学版), 2016, 44(12):1851-1857.
SHAO Yahui, HOU Junyong, GE Yaojun,et al. Quantification analysis of non-stationary characteristics of hurricane utilizing recurrence plot theory[J].Journal of Tongji University(natural science), 2016, 44(12):1851-1857.
[7] 杨栋. 桥梁健康监测信号的递归特性分析[D]. 中南大学, 2012.
YANG Dong. Analysis of recurrence characteristics for the monitoring signals of bridge SHM[D].Central South University,2012.
[8] 葛凤翔, 任岁玲, 郭鑫,等. 微弱信号处理及其研究进展[J].声学技术. 2013,32(5):362-364.
GE Fengxiang, REN Suiling, Guo Xin, et al. Weak signal processing and its present [J]. Technical Acoustics. 2013, 32(5):362-364.
[9] HUANG N E, SHEN Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
[10] 马宏伟, 张大伟, 曹现刚,等. 基于 EMD 的振动信号去噪方法研究[J]. 振动与冲击, 2016, 35(22):38-40.
MA Hongwei, ZHANG Dawei, CAO Xiangang, et al. Vibration signal de-noising method based on empirical mode decomposition[J].Journal of vibration and shock,2016,35(22):38-40.
[11] 吴杰, 胡夏闽, 乔燕,等. 基于交叉证认的EMD小波滤波在大桥动态监测去噪中的应用[J]. 振动与冲击, 2017(22):212-217.
WU Jie, HU Xiamin, QIAO Yan, et al. EMD-wavelet filtering based on cross-validation and its application in bridge dynamic monitoring [J]. Journal of vibration and shock, 2017(22):212-217.
[12] 范博楠, 王海斗, 徐滨士,等. 强背景噪声下微弱声发射信号提取及处理研究现状[J]. 振动与冲击, 2015, 34(16):147-155.
FAN Bonan, WANG Haidou, XU Binshi, et al. Present research situation of the extraction and processing of weak acoustic emission signals under strong background noise [J]. Journal of vibration and shock, 2015, 34(16):147-155.
[13] 单德山, 李乔, 黄珍. 桥梁动力测试信号的自适应分解与重构[J]. 振动与冲击, 2015, 34(3):1-6.
SHAN Deshan, LI Qiao, HUANG Zhen. Adaptive decomposition and reconstruction for bridge structural dynamic testing signals [J]. Journal of vibration and shock, 2015, 34(3):1-6.
[14] 黄珍. 桥梁结构运营模态参数识别方法对比研究[D]. 西南交通大学, 2015.
HUANG Zhen. Comparison research of bridge structural operational modal parameter identification methods [D]. Southwest Jiaotong University,2015.

PDF(2219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/