基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟

王峰1,邹早建1,2,任奕舟3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 153-158.

PDF(1027 KB)
PDF(1027 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 153-158.
论文

基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟

  • 王峰1,邹早建1,2,任奕舟3
作者信息 +

Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model

  • WANG Feng1,ZOU Zaojian1,2,REN Yizhou3
Author information +
文章历史 +

摘要

本文基于非线性有限元数值方法,引入粘聚单元模型并结合线性软化弹塑性本构模型,对平整冰与竖直固定圆柱体碰撞进行了数值模拟,研究了碰撞过程中平整冰的破坏模式和柱体所受冰载荷。数值模拟结果与实际观测到的冰层撞击灯塔时的破坏模式进行了比较,两者吻合良好。随后分别分析了粘聚单元破坏准则和碰撞速度对圆柱体所受水平冰载荷的影响。结果表明:柱体所受水平冰载荷受粘聚单元破坏准则影响有限,与碰撞速度呈正相关且平均冰载荷的增长速度稍高于线性增长。

Abstract

Based on the nonlinear finite element method, a cohesive element model was combined with the linear softening elastoplastic constitutive model to simulate the collision between level ice and a fixed vertical cylinder.The failure mode of level ice and the ice loads on the cylinder during the collision were studied.The simulated results were compared with the practical observations on the ice failure mode in ice sheet-lighthouse collision, and good agreement was achieved.Then the effects of traction-separation law of the cohesive element model and collision velocity on the horizontal ice loads on the cylinder were investigated, respectively.The simulated results show that the traction-separation law has a limited influence on the horizontal ice loads, and the ice loads increase with collision velocity.The growth speed of mean ice loads is slightly higher than linear growth.

关键词

粘聚单元模型 / 平整冰-圆柱体碰撞 / 冰破坏模式 / 冰载荷

Key words

cohesive element model / level ice-cylinder collision / ice failure mode / ice loads

引用本文

导出引用
王峰1,邹早建1,2,任奕舟3. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153-158
WANG Feng1,ZOU Zaojian1,2,REN Yizhou3. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16): 153-158

参考文献

[1] Lindqvist G. A straightforward method for calculation of ice resistance of ships [C]. In 10th International Conference on Port and Ocean Engineering under Arctic Conditions, Lulea, Sweden, 1989, 722-735.
[2] Riska K. Models of ice-structure contact for engineering applications [J]. Mechanics of Geomaterial Interfaces, 1995, 42: 77-103.
[3] Aksnes V. A simplified interaction model for moored ships in level ice [J]. Cold Regions Science and Technology, 2010, 63(1): 29-39.
[4] Tan X. Numerical investigation of ship’s continuous-mode icebreaking in level ice [D]. Trondheim, Norway: NTNU, 2014.
[5] Yue Q, Guo F, Kärnä T. Dynamic ice forces of slender vertical structures due to ice crushing [J]. Cold Regions Science and Technology, 2009, 56(2): 77-83.
[6] 叶柯华, 李春, 杨阳, 等. 基于自激冰振的风力机海冰载荷分析 [J]. 振动与冲击, 2017,36(24): 177-183.
YE Ke-hua, LI Chun, YANG Yang, et al. Sea-ice load analysis of offshore wind turbines based on self-excited ice induced vibration [J]. Journal of Vibration and Shock, 2017, 36(24): 177-183.
[7] Paavilainen J, Tuhkuri J, Polojärvi A. 2D combined finite-discrete element method to model multi-fracture of beam structures [J]. Engineering Computations, 2009, 26(6): 578-598.
[8] Lubbad R, Løset S. A numerical model for real-time simulation of ship-ice interaction [J]. Cold Regions Science and Technology, 2011, 65(2): 111-127.
[9] 刘瀛昊, 佟福山, 高良田. 基于原型测量的极地航行船舶船体冰载荷分析 [J]. 振动与冲击, 2017, 36(07): 226-233.
LIU Ying-hao, TONG Fu-shan, GAO Liang-tian. Ice-induced load analysis for hull of an ice-going vessel based on full-scale measurement [J]. Journal of Vibration and Shock, 2017, 36(07): 226-233.
[10] Zhou L, Riska K, und Polach R V B, et al. Experiments on level ice loading on an icebreaking tanker with different ice drift angles [J]. Cold Regions Science and Technology, 2013, 85: 79-93.
[11] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6(6): 773-781.
[12] Gürtner A. Experimental and numerical investigations of ice-structure interaction [D]. Trondheim, Norway: NTNU, 2009.
[13] Lu W J, Lubbad R, Løset S. Simulating ice-sloping structure interactions with the cohesive element method [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(3): 031501.
[14] 任奕舟, 邹早建. 破冰船在冰层中连续破冰时的冰阻力预报[J]. 上海交通大学学报, 2016, 50(8): 1152-1157.
REN Yi-zhou, ZOU Zao-jian. Ice resistance prediction of an icebreaker during continuous icebreaking in level ice [J]. Journal of Shanghai Jiaotong University, 2016, 50(8): 1152-1157.
[15] Hilding D, Forsberg J, Gürtner A. Simulation of ice action loads on offshore structures [C]. In 8th European LS-DYNA Users Conference, Strasbourg, France, 2011, 1-12.
[16] Bjerkås M, Albrektsen A, Gürtner A. Static and dynamic ice actions in the light of new design codes [C]. In 29th International Conference on Offshore Mechanics and Arctic Engineering, Shanghai, China, 2010, 733-739.
[17] Hetényi M. Beams on Elastic Foundation [M]. University of Michigan Press, Ann Arbor, MI, 1946.
[18] Timco G W, Weeks W F. A review of the engineering properties of sea ice [J]. Cold Regions Science and Technology, 2011, 60(2): 107-129.
 

PDF(1027 KB)

Accesses

Citation

Detail

段落导航
相关文章

/