一种山区峡谷桥址区风场特性数值模拟方法

靖洪淼1,廖海黎1,2,周强1,2,马存明1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 200-207.

PDF(2540 KB)
PDF(2540 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 200-207.
论文

一种山区峡谷桥址区风场特性数值模拟方法

  • 靖洪淼1,廖海黎1,2,周强1,2,马存明1,2
作者信息 +

A numerical simulation method for wind field characteristics of mountainous valley at bridge site

  • JING Hongmiao1,LIAO Haili1,2,ZHOU Qiang1,2,MA Cunming1,2
Author information +
文章历史 +

摘要

为准确获得山区峡谷桥址处的风场特性,以一座在建的山区峡谷大跨度桥梁为工程背景,基于开源的计算流体动力学(Computational Fluid Dynamics, CFD)软件OpenFOAM平台,提出了一种山区峡谷桥址处风场特性的数值模拟方法,改进了计算域形态,设置了地形过渡段,并利用“虚拟标准气象站”法获得了计算域入口风速条件,从而实现了高质量的山区风场数值模拟,解决了数值计算雷诺数与实际不符的难题。在此基础上,分析了大桥主梁上横桥向和顺桥向的风速及放大系数、风攻角、风向角和不同跨度处的风剖面。同时结合流线显示方法,研究了桥址处主梁风场流动机理。结果表明:该桥址处的基本风速为24.75 m/s;河道岸边的陡峭山体对气流的干扰作用很大,使风攻角、风向角和风速放大系数在桥位处发生较剧烈变化;部分来流下的风剖面形态受地形影响较大,底部出现急加速现象,风速呈现显著的剪切特性。本文提出的数值模拟方法丰富了山区峡谷桥址处风场特性分析手段,对山区桥梁抗风设计有一定的指导作用。

Abstract

Based on the open source computational fluid dynamics (CFD) software OpenFOAM, a new method, which improves the computational domain, terrain transition section and the inlet condition obtained by “virtual standard weather station” method, was proposed to solve the disagreement between numerical and actual Reynolds numbers and accurately obtain the wind field characteristics of bridge site in a mountainous terrain.Then the wind velocity and speed-up factor, wind angle of attack, wind direction and wind profile along the bridge span were analyzed.Moreover, the flow mechanism of wind field was also studied by the flow display.The results show that the basic design wind speed at the bridge site is 24.75 m/s.The mountain on the sides of the river has an obvious influence on wind field, thus the wind angle of attack, wind direction and speed-up factor change dramatically along the bridge span.The wind profile was greatly affected by the terrain in the certain wind directions, then the wind speed near the ground accelerated rapidly and exhibited significant velocity-shear characteristics.

关键词

山区峡谷 / 大跨度桥梁 / 桥址风场 / OpenFOAM / 数值模拟

Key words

 mountainous valley / long span bridge / wind field characteristics at bridge site / OpenFOAM / numerical simulation

引用本文

导出引用
靖洪淼1,廖海黎1,2,周强1,2,马存明1,2. 一种山区峡谷桥址区风场特性数值模拟方法[J]. 振动与冲击, 2019, 38(16): 200-207
JING Hongmiao1,LIAO Haili1,2,ZHOU Qiang1,2,MA Cunming1,2. A numerical simulation method for wind field characteristics of mountainous valley at bridge site[J]. Journal of Vibration and Shock, 2019, 38(16): 200-207

参考文献

[1] JTG/TD60-01-2004, 公路桥梁抗风设计规范[S].
JTG/TD60-01-2004, Wind-resistant Design Specification for Highway Bridges[S].
[2] 张明金, 李永乐, 唐浩俊, 等. 高海拔高温差深切峡谷桥址区风特性现场实测[J]. 中国公路学报, 2015, 28(3): 60-65.
ZHANG Ming-jin, LI Long-le, TANG Hao-jun, et al. Field measurement of wind characteristics at bridge sites in deep gorge with high temperature difference [J]. China journal of highway and transport, 2015, 28(3): 60-65.
[3] 黄国庆, 彭留留, 廖海黎, 等. 普立特大桥桥位处山区风特性实测研究[J]. 西南交通大学学报, 2016, 51(2): 349-356.
HUANG Guoqing, PENG Liuliu, LIAO Haili, et al. Field measurement study on wind characteristics at Puli Great Bridge site in mountainous area [J]. Journal of Southwest Jiaotong University, 2016, 51(2): 349-356.
[4] 刘明, 廖海黎, 李明水, 等. 西堠门大桥桥址处风场特性研究[J]. 铁道建筑, 2010 (5): 18-21.
[5] XU Hong-tao, HE Yong, LIAO Hai-li, et al. Experimental Study of a Wind Field in a Long-span Bridge Site Located in Mountainous Valley Terrain[J]. Journal of Highway and Transportation Research and Development, 2013, 7(1): 44-50.
[6] 白桦, 李加武, 刘健新. 西部河谷地区三水河桥址风场特性试验研究[J]. 振动与冲击, 2012, 31(14): 74-78.
BAI Hua, LI Jiawu, LIU Jianxin. Experimental study on wind field characteristics of Sanshui river bridge site located in west valley region [J]. Journal of vibration and shock, 2012, 31(14): 74-78.
[7] 王凯, 廖海黎, 刘君. 山区峡谷大跨钢桁梁桥抗风特性试验研究[J]. 振动与冲击, 2014, 33(19): 169-174.
WANG Kai, LIAO Haili, LIU Jun. Wind resistance tests for long-span steel truss bridges across gorges of mountainous area [J]. Journal of vibration and shock, 2014, 33(19): 169-174.
[8] 张玥, 唐金旺, 周敉, 等. 峡谷复杂地形风场空间分布特性试验研究[J]. 振动与冲击, 2016, 35(12): 35-40,49.
ZHANG Yue, TANG Jin-wang, ZHOU Mi, et al. Experimental research on the spatial distribution characteristics of wind field in valley terrain [J]. Journal of vibration and shock, 2016, 35(12): 35-40, 49.
[9] 孙毅, 李正良, 黄汉杰, 等. 山地风场平均及脉动风速特性试验研究[J]. 空气动力学学报, 2011, 29(5): 593-599.
SUN Yi, LI Zheng-liang, HUANG Han-jie, et al. Experimental research on mean and fluctuating wind velocity in hilly terrain wind field [J]. Acta aerodynamica sinica, 2011, 29(5): 593-599.
[10] 李永乐, 胡朋, 蔡宪棠, 等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学报, 2011, 29(6): 770-776.
LI Yong-le, HU Peng, CAI Xian-tang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain [J]. Acta aerodynamica sinica, 2011, 29(6): 770-776.
[11] 李永乐, 蔡宪棠, 唐康, 等. 深切峡谷桥址区风场空间分布特性的数值模拟研究[J]. 土木工程学报, 2011, 44(2): 116-122.
Li Yongle, Cai Xiantang, Tang Kang, et al. Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation [J]. China civil engineering journal, 2011, 44(2): 116-122.
[12] 于舰涵, 李明水, 廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报, 2016, 51(4): 654-662.
YU Jianhan, LI Mingshui, LIAO Haili. Numerical Simulation of Effect of Mountainous Topography on Wind Field at Bridge Site [J]. Journal of Southwest Jiaotong University, 2016, 51(4): 654-662.
[13] Sarah J. Wakes, Tanja Maegli, Katharine J. Dickinson, et al. Numerical modelling of wind flow over a complex topography [J]. Environmental Modelling and Software, 2010, 25:237-247.
[14] Hehe Ren, Shujin Laima, Wen-Li Chen, et al. Numerical simulation and prediction of spatial wind field under complex terrain [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180:49-65.
[15] Chowdhury Mohammad Jubayer, Horia Hangan. A hybrid approach for evaluating wind flow over a complex terrain [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175:65-76.
[16] 胡朋, 李永乐, 廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学报, 2013, 31(2): 231-238.
HU Peng, LI Yong-le, LIAO Hai-li. Shape of boundary transition section for mountains-gorge bridge site terrain model [J]. Acta aerodynamica sinica, 2013, 31(2): 231-238.
[17] Liu, Z. Q., Ishihara, T. Numerical study of turbulent flow over complex topography by LES model [C]. In: The Sixth International Symposium on Computational Wind Engineering. CWE2014, CD-ROM.
[18] 王凯, 廖海黎, 李明水, 等. 山区峡谷桥梁设计基准风速的确定方法[J]. 西南交通大学学报, 2013, 48(1): 29-35.
WANG Kai, LIAO Haili, LI Mingshui, et al. Determination method for basic design wind speed of mountainous-valley bridge [J]. Journal of Southwest Jiaotong University, 2013, 48(1): 29-35.
[19] 祝志文, 张士宁, 刘震卿, 等. 桥址峡谷地貌风场特性的CFD模拟[J]. 湖南大学学报(自然科学版), 2011, 38(10): 13-17.
ZHU Zhi-wen, ZHANG Shi-ning, LIU Zhen-qing, et al. CFD Simulation of Wind Field at Bridge Site on Gorge Terrain [J]. Journal of Hunan University (Natural Sciences), 2011, 38(10): 13-17.
[20] Bert Blocken, PhD, MSc. CFD IN BUILDING ENGINEERING: Fundamentals and applications in urban physics and wind engineering (version 3) [M]. Department of the Built Environment Eindhoven University of Technology, the Netherlands: BUILDING PHYSICS AND SERVICES, 2012.

PDF(2540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/