弹性地基上受压矩形纳米板的自由振动与屈曲特性

滕兆春1,刘露1,衡亚洲2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 208-216.

PDF(2873 KB)
PDF(2873 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 208-216.
论文

弹性地基上受压矩形纳米板的自由振动与屈曲特性

  • 滕兆春1,刘露1,衡亚洲2
作者信息 +

Free vibration and buckling characteristics of compressed rectangular nanoplates resting on elastic foundation

  • TENG Zhaochun1, LIU Lu1, HENG Yazhou2
Author information +
文章历史 +

摘要

基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有无量纲固有频率和屈曲载荷的特征方程。数值给出了不同边界条件下无量纲地基刚度系数、压力强度、载荷参数、长宽比和纳米尺度对正交各向异性矩形纳米板无量纲固有频率的影响以及不同无量纲地基刚度系数、载荷参数和纳米尺度下的屈曲临界载荷值。结果表明:正交各向异性矩形纳米板的无量纲固有频率随无量纲地基刚度系数、载荷参数和长宽比的增大而增大,随纳米尺度的增大而趋向减小;屈曲临界载荷也随无量纲地基刚度系数的增大而增大,随纳米尺度的增大而减小。

Abstract

Based on the Eringen’s nonlocal elasticity theory and the classical thin plate theory, the governing differential equation for free vibration of in-plane compressed orthotropic nanoplate resting on Winkler-Pasternak elastic foundation was derived by using the Hamilton’s principle.Then the dimensionless form of the governing differential equation was also obtained.The dimensionless governing differential equation and boundary conditions were transformed to the equivalent algebraic equations by using a semi-analytic method called differential transformation method (DTM), which can derive characteristic equations of dimensionless natural frequencies and buckling loads.The influence of dimensionless foundation stiffness coefficients, pressure intensity, load parameter, aspect ratio and nano-scale factor on the dimensionless natural frequency of orthotropic rectangular nanoplate under different boundary conditions was numerically presented and the critical buckling load values of different dimensionless foundation stiffness coefficients, load parameter and nano-scale factor were given.The results show that the dimensionless natural frequency of orthotropic rectangular nanoplate increases with dimensionless foundation stiffness coefficients, load parameter and aspect ratio; decreases with nano-scale factor.The critical buckling load increases with dimensionless foundation stiffness coefficient, decreases with  nano-scale factor.

关键词

Eringen非局部弹性理论 / Winkler-Pasternak弹性地基 / 无量纲固有频率 / 屈曲临界载荷 / 微分变换法(DTM)

Key words

Eringen’s nonlocal elasticity theory / Winkler-Pasternak elastic foundation / non-dimensional natural frequency;bucklingcritical load / Differential Transform Method (DTM)

引用本文

导出引用
滕兆春1,刘露1,衡亚洲2. 弹性地基上受压矩形纳米板的自由振动与屈曲特性[J]. 振动与冲击, 2019, 38(16): 208-216
TENG Zhaochun1, LIU Lu1, HENG Yazhou2. Free vibration and buckling characteristics of compressed rectangular nanoplates resting on elastic foundation[J]. Journal of Vibration and Shock, 2019, 38(16): 208-216

参考文献

[1] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9):4703-4710.
[2] Reddy J N. Nonlocal theories for bending, buckling and vibration of beams [J]. International Journal of Engineering Science, 2007, 45(2-8):288-307.
[3] Murmu T, Pradhan S C. Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM [J]. Physica E: Low-dimensional Systems and Nanostructures, 2009, 41(7):1232-1239.
[4] 刘灿昌,裘进浩,季宏丽,等. 考虑非局部效应的纳米梁非线性振动 [J]. 振动与冲击, 2013, 32(4):158-162.
LIU Can-chang,QIU Jin-hao,JI Hong-li, et al. Non-local effect on non-linear vibration characteristics of a nano-beam [J].Journal of Vibration and Shock, 2013, 32(4): 158-162.
[5] Nejad M Z, HadiA. Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams [J].International Journal of Engineering Science, 2016, 106:1-9.
[6]Jandaghian A A, Rahmani O.An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory [J].Journal of Mechanics, 2016, 32(2):143-151.
[7] NorouzzadehA, Ansari R. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity[J].Physica E:Low-dimensional Systems and Nanostructures, 2017, 88:194-200.
[8]张大鹏, 雷勇军. 基于非局部理论的黏弹性地基上欧拉梁自由振动特性分析[J]. 振动与冲击, 2017, 36(1): 88-95,133.
ZHANG Da-peng, LEI Yong-jun. Freevibration characteristics of an Euler-Bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory [J]. Journal of Vibration and Shock, 2017, 36(1):88-95,133.
[9] Moosavi H, Mohammadi M, Farajpour A, et al. Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory [J]. Physica E: Low-dimensional Systems and Nanostructures, 2011, 44(1):135-140.
[10] Behfar K, Naghdabadi R. Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium[J]. Composites Science and Technology, 2005, 65(7-8):1159-1164.
[11] Pradhan S C, Phadikar J K. Nonlocal elasticity theory for vibration of nanoplates [J]. Journal of Sound and Vibration, 2009, 325(1-2):206-223.
[12] Satish N, Narendar S, Gopalakrishnan S. Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics[J]. Physica E: Low-dimensional Systems and Nanostructures, 2012, 44(9):1950-1962.
[13] Kumar T J P, Narendar S, Gopalakrishnan S. Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics[J]. Composite Structures, 2013, 100:332-342.
[14] 陈玲, 刘金建, 李成, 等. 基于非局部弹性理论的纳米板横向振动[J]. 力学季刊, 2016, 37(3):485-492.
CHEN Ling, LIU Jin-jian, LI Cheng, et al. Transverse vibration of nanoplates based on nonlocal elasticity theory [J]. Chinese Quarterly of Mechanics, 2016, 37(3):485-492.
[15] Ansari R, GholamiR. Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory [J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750014-26.
[16] Despotovic N. Stability and vibration of a nanoplate under body force using nonlocal elasticity theory [J]. ActaMechanica, 2018, 229(1): 273-284.
[17] Reddy J N.Energy principles and variational methods in applied mechanics [M]. Third Edition, Hoboken: John Wiley & Sons Ltd, 2017.
[18] Eltather M A, Emam S A, Mahmoud F F. Free vibration analysis of functionally graded size-dependent nanobeams[J]. Applied Mathematics and Computation, 2012, 218(14):7406-7420.
[19] Yoo C H, Lee S C. Stability of structures: principles and applications [M]. New York: Elsevier Ltd, 2011.
[20] 赵家奎. 微分变换及其在电路中的应用[M].武汉: 华中理工大学出版社,1998.
ZHAO Jia-kui.Differential transformation and its application for electrical circuits [M]. Wuhan: Huazhong University of Science and Technology Press, 1988.
[21] Hatami M, Ganji D D, Sheikholeslami M. Differential transformation method for mechanical engineering problems [M]. London: ElsevierLtd, 2017.
[22] Yesilce Y. Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias [J]. Structural Engineering and Mechanics, 2015, 53(3): 537-573.
[23] 滕兆春,衡亚洲,张会凯, 等. 弹性地基上转动FGM梁自由振动的DTM分析[J]. 计算力学学报, 2017, 34(6):712-717.
TENG Zhao-chun,HENG Ya-zhou,ZHANG Hui-kai,et al. DTM analysis for free vibration of rotating FGM beams resting on elastic foundations [J]. Chinese Journal of Computational Mechanics, 2017, 34(6):712-717.
[24] Analooei H R, Azhari M, Heidarpour A. Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method[J]. Applied Mathematical Modelling, 2013, 37(10-11):6703-6717.
[25] Lal R, Saini R. Buckling and vibration analysis of non-homogeneous rectangular Kirchhoff plates resting on two-parameter foundation[J]. Meccanica, 2015, 50(4):893-913.
[26] Bert C W, Malik M. Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach [J]. Journal of Sound and Vibration, 1996, 190(1):41-63.

PDF(2873 KB)

Accesses

Citation

Detail

段落导航
相关文章

/