空气静压止推轴承自激微振动数值分析及实验研究

龙威,王继尧1,李法社2,吴蜜蜜1,邓伟3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 224-232.

PDF(1979 KB)
PDF(1979 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 224-232.
论文

空气静压止推轴承自激微振动数值分析及实验研究

  • 龙威 ,王继尧1,李法社2,吴蜜蜜1,邓伟3
作者信息 +

Numerical analysis and experimental research on self-excited micro-vibration of aerostatic thrust bearings

  • LONG Wei1,WANG Jiyao1, LI Fashe2, WU Mimi1, DENG Wei3
Author information +
文章历史 +

摘要

随着控制精度和工作稳定性要求的不断提高,空气静压轴承气膜内部的自激振动成为制约气浮系统进一步发展的关键问题。以圆盘型中心供气小孔节流空气静压轴承气膜内的三维自激微振动为研究对象,基于流体润滑理论和修正的速度滑移边界建立了气膜的动力学模型和自激振动方程;基于平面流函数和大涡模拟方法,在确定气膜微振动形成机理的基础上,分析了三维气旋涡量分布特征和速度场变化规律;最后通过实验测试了气膜自激微振在三轴方向上的时域和频域特性,并分析了各轴向自激微振动的影响因素。研究表明:空气静压止推轴承的自激振动是气膜流场内三维气旋共同形成的,且沿气膜高度方向(z方向)的振动强度显著大于水平面内(x、y方向)的振动;轴承气膜内三个方向的自激振动强度都随着供气压力的增加而增加,且x、y方向自激振动的强度较z方向更为敏感;轴承气膜内三个方向自激振动的固有频率会随着供气压力的变化而改变,其中x、y方向自激振动的固有频率随供气压力增加而增长,而z方向自激振动的固有频率随供气压力的增大基本不变。

Abstract

With the continuous improvement of control accuracy and working stability, the self-excited vibration in the air film of aerostatic bearing has become the key problem restricting the further development of air flotation system. Taking the three-dimensional self-excited micro-vibration in the film of disc type central air supply orifice throttle air hydrostatic bearing as the research object, the dynamic model and self-excited vibration equation of the film were established based on the fluid lubrication theory and the modified velocity slip boundary. Based on the plane flow function and the large eddy simulation method, the characteristics of three-dimensional gas vortex vorticity distribution and the variation of velocity field were analyzed on the basis of determining the formation mechanism of gas film microvibration. Finally, the time domain and frequency domain characteristics of gas film self-excited micro-vibration in triaxial direction were tested by experiments, and the influencing factors of each axial self-excited micro-vibration were analyzed. The results showed that the self-excited vibration of the aerostatic thrust bearing is formed by three-dimensional gas vortexs in the film flow field, and the vibration intensity along the film height direction (z direction) is significantly higher than that in the horizontal plane (x, y direction). The intensity of self-excited vibration in the three directions of bearing film increases with the increase of gas supply pressure, and the intensity of self-excited vibration in x and y directions are more sensitive than that in z direction.The natural frequency of the self-excited vibration in the x and y directions will increase with the increase of the gas supply pressure. While that in z direction is basically unchanged with the increase of gas supply pressure.

关键词

空气静压轴承 / 自激微振动 / 大涡模拟 / 三维气旋 / 涡量分布

Key words

aerostatic bearing / self-excited microvibration / large eddy simulation / three-dimensional gas vortex / vorticity distribution

引用本文

导出引用
龙威,王继尧1,李法社2,吴蜜蜜1,邓伟3. 空气静压止推轴承自激微振动数值分析及实验研究[J]. 振动与冲击, 2019, 38(16): 224-232
LONG Wei1,WANG Jiyao1, LI Fashe2, WU Mimi1, DENG Wei3. Numerical analysis and experimental research on self-excited micro-vibration of aerostatic thrust bearings[J]. Journal of Vibration and Shock, 2019, 38(16): 224-232

参考文献

[1] 傅仙罗. 静压气浮轴承在真空中的自振问题[J]. 航空学报, 1981(4): 70-79. 
FU Xianluo. Self-excited resonance of aerostatic bearings in a vacuum environment [J] .Acta Aeronautica Et Astronautica  Sinica, 1981(4): 70-79.
[2] Yang Z, Chen H, Yu T.A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage [J]. Review of Scientific Instruments, 2016, 87(8): 77-85.
[3] Yu Puliang, Chen Xuedong, Wang, Xiaoli. Frequency-Dependent Nonlinear Dynamic Stiffness of Aerostatic Bearings Subjected to External Perturbations [J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(8):1771-1777.
[4] 王茜, 吴剑进, 李东升. 气固耦合空气静压导轨气膜非定常流动分析[J]. 润滑与密封,2008,33(9):28-30.
WANG Qian, WU Jianjin, LI Dongsheng. Unsteady flow analysis of aerostatic bearing under flow/structure coupled condition[J]. Lubrication Engineering,2008,33(9):28-30.
[5] 陈琦, 陈斌, 蔡黎明. 均压槽对空气静压轴承微振动的影响[J]. 光学精密工程, 2014,12:3354-3359.     CHEN Qi, CHEN Bin, CAI Li-ming. Effect of equalizing groove on small vibration of aerostatic bearings[J]. Optics and Precision Engineering, 2014,12:3354-3359.
[6] 李琦, 肖曙红, 王晓明. 微孔阵列式节流器的结构参数对空气轴承稳定性的影响[J].润滑与密封,2016,41(1):26-31.                               LI Qi, XIAO Shuhong, WANG Xiaoming. Influence of structural parameters of multiple orifices array restrictor on aerostatic bearings stability [J]. Lubrication Engineering, 2016,41(1):26-31.
[7] 张海军. 气体轴承气锤自激机理分析及减振方法研究[D]. 哈尔滨:哈尔滨工业大学, 2002. 
[8] 徐登峰, 朱煜, 尤政. 空气轴承提高气浮系统稳定性的阻尼技术[J].纳米技术与精密工程, 2010(1):84-89.     XU Dengfeng,ZHU Yu,YOU Zheng. Improving Damping capacity of the aerostatic bearing[J]. Nanotechnology and Precision Engineering,2010(1):84-89.
[9] 田一夫. 基于气浮支承结构的主动减振系统研究[D]. 哈尔滨工业大学,2014.
[10] 孔中科, 陶继忠, 吉方等. 小孔节流气体静压轴承气锤振动现象的实验研究[J]. 润滑与密封, 2013, 07:66-70.
KONG Zhongke, TAO Jizhong, JI Fang,et al.Experimental study on pneumatic hammer of aerostatic bearings with supply holes[J]. Lubrication Engineering, 2013,(7):66-70.
[11] 孔中科.气体静压轴承气锤振动机理分析与实验研究[D]. 中国工程物理研究院, 2013.
[12] 孔中科, 王波, 何世安等. 气体静压止推轴承气锤振动现象分析与研究[J]. 低温技术, 2014, 01:7-11.
KONG Zhongke, WANG Bo, HE Shian,et al.Study on the pneumatic hammer in aerostatic thrust bearings[J].Cryogenics & Superconductivity, 2014, (1):7-11.
[13] Talukder H M. Stowell T B, Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing[J]. Tribology International, 2003, 36: 586-591.
[14] Farid Al-Bender. On the modeling of the dynamic characteristics of aerostatic bearing films from stability analysis to active compensation [J]. Precision Engineering, 2009, (33):117-126.
[15] 刘暾. 圆盘形平面止推气体轴承的气锤自激[C]. 2008 年中国空间科学学会空间机电与空间光学专业委员会学术年会论文集. 兰州,2008:64-67.
[16] 杜建军, 刘暾, 张国庆等. 带有圆周方向均压槽的静压气体止推轴承的气锤自激[J]. 润滑与密封, 2010,35(1): 9-12.
DU Jianjun, LIU Dun, ZHANG Guoqing. Study of self-excited vibration for externally pressurized gas yhrust bearing with circumferential groove[J]. Lubrication Engineering, 2010,35(1): 9-12.
[17] 裴浩, 龙威, 杨绍华. 空气静压轴承微振动形成机理分析[J]. 振动与冲击,2018,37(5):71-78.
LONG Wei, PEI Hao, YANG Shaohua. Formation Mechanism of Micro - vibration of Aerostatic Bearings [J]. Journal of Vibration and Shock,2017(12):3049-3056.
[18] 张海军, 祝长生, 杨琴等. 广义Maxwell速度滑移边界模型[J]. 中国科学:物理学 力学 天文学, 2013(5):662-669.                          ZHANG Haijun, ZHU Changsheng, YANG Qin,et al.Generalized maxwell velocity slip boundary model[J]. Scientia Sinica Physica,Mechanica & Astronomica, 2013(5):662-669.
[19] 李蒙, 涂正光, 徐晶磊. 高雷诺数槽道湍流的壁面模化大涡模拟研究[J]. 航空动力学报, 2015, 30(11):2705-2712.                              LI Meng, TU Zhengguang, XU Jinglei. Investigation on wall modeled large eddy simulation of channel turbulent flow in high Reynolds number[J]. Journal of Aerospace Power, 2015, 30(11):2705-2712.
[20] 樊菁. 稀薄气体动力学:进展与应用[J]. 力学进展, 2013,43(2):185-201.                             FAN Jing. Rarefied gas dynamics: Advances and applications[J]. Advances in Mechanics, 2013, 43(2):185-201.
[21] 宁方伟, 龙威, 刘岩. 微小尺度下平板间气体流动机理及压力特性分析[J]. 中国机械工程, 2016, 27(14):1862-1865.                             NING Fangwei, LONG Wei, LIU Yan. Analysis of gas flow mechanism and pressure characteristics between plates in micro scale[J]. China Mechanical Engineering, 2016, 27(14):1862-1865.

PDF(1979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/