基于响应面与灵敏度分析的区间不确定性参数识别方法

陈学前1,2,沈展鹏1,2,刘信恩1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 267-273.

PDF(1473 KB)
PDF(1473 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 267-273.
论文

基于响应面与灵敏度分析的区间不确定性参数识别方法

  • 陈学前1,2,沈展鹏1,2,刘信恩1,2
作者信息 +

A method of interval uncertain parameter identification based on a response surface model and sensitivity analysis

  •  CHEN Xueqian1,2, SHEN Zhanpeng1,2, LIU Xin’en1,2
Author information +
文章历史 +

摘要

针对工程结构中普遍存在的不确定性,需开展考虑不确定性的有限元建模与模型参数识别。提出了具有区间不确定性参数识别的分步实施方法,第一步首先通过Box-Behnken矩阵设计方法进行响应面的样本点设计,并代入有限元模型计算获得结构的关心固有频率,再基于二次多项式建立固有频率与待识别参数间的响应面模型,最后基于优化方法与自适应响应面思想对区间参数中值进行识别,第二步基于响应面模型并结合灵敏度分析,通过迭代实现区间参数半径的识别。通过一个质量—弹簧系统的数值算例和一组镜架系统工程实例的区间不确定性参数识别,验证了本文所提出方法的可行性和可靠性。参数识别结果表明所提出的方法具有较高的计算效率且可有效地避免区间优化导致的收敛问题。

Abstract

It is necessary to study the finite element (FE) modeling and updating in consideration of the uncertainty, because the uncertainty is widely existent in the engineering structure. A method of interval uncertain parameter identification in the structural dynamics was proposed. In the method, the model updating with interval uncertainty includes two steps. In step one, the samples of the response model are obtained by Box-Behnken design, and the interesting natural frequencies of the model are calculated by the finite element simulation. Then, the response surface model between the natural frequency and the identifying parameters is constructed according to the quadratic polynomial. Lastly,the interval average value of uncertain parameters is identified based on the optimal algorithm and the adaptive response surface model. The interval width of uncertain parameters is identified by combining the response model and the sensitivity analysis in step two. The proposed method has been validated by a numerical mass-spring system and a transport mirror system. The updating results have proved the feasibility and reliability of the method. Also, the results show that the proposed method can improve the efficiency and avoid the questions induced by the interval optimization.

关键词

响应面模型 / 区间不确定性 / 参数识别 / 灵敏度分析

Key words

response surface model / interval uncertainty / parameter identification / sensitivity analysis

引用本文

导出引用
陈学前1,2,沈展鹏1,2,刘信恩1,2. 基于响应面与灵敏度分析的区间不确定性参数识别方法[J]. 振动与冲击, 2019, 38(16): 267-273
CHEN Xueqian1,2, SHEN Zhanpeng1,2, LIU Xin’en1,2. A method of interval uncertain parameter identification based on a response surface model and sensitivity analysis[J]. Journal of Vibration and Shock, 2019, 38(16): 267-273

参考文献

[1] Friswell M I, Mottershead J E. Finite element model updating in structural dynamics [M]. Dordrecht: Kluwer Academic Publishers, 1995
[2] 郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展-模型确认[J].力学进展,2006,36(1) : 36-42.
GUO Qintao,ZHANG Lingmi,FEI Qingguo. From FE model updating to model validation: advances in modeling of dynamic structures [J].Advances in Mechanics,2006,36(1) : 36-42.
[3] 万华平,任伟新,魏锦辉. 基于高斯过程响应面的结构有限元模型修正方法 [J]. 振动与冲击,2012,31(24):82-87.
WAN Huaping, REN Weixin, WEI Jinhui. Structural finite element model updating based on Gaussian process response surface methodology [J]. Journal of Vibration and Shock , 2012,31(24):82-87.
[4] REN R. and BEARDS C. F.. Identification of ‘effective’ linear joints using coupling and joint identification techniques[J]. ASME Journal of vibration and Acoustics, 1998, 121:331-338.
[5] 刘洋,段忠东,周道成. 基于模态综合技术的结构有限元模型修正 [J]. 诊断、测试与诊断, 2009,29(3):287-292.
LIU Yang, DUAN Zhongdong, ZHOU Daocheng. Finite element model updating of complex structure using component mode synthesis technique [J]. Journal of Vibration, Measurement & Diagnosis, 2009,29(3):287-292.
[6] 麻越垠,陈万华,王元兴,等. 基于响应面方法的叶栅摆动装置有限元模型修正. 振动与冲击,2016,35(22):232-237.
MA Yueyin,CHEN Wanhua,WANG Yuanxing, et al. Finite element model updating of a blade swing mechanism based on response surface method. Journal of Vibration and Shock, 2016, 35(22):232-237.
[7] Friswell M I. The adjustment of structural parameters using a minimum variance estimator [J]. Mechanical Systems and Signal Processing, 1989,3(2):143-155.
[8] Beck J L, Katafygiotis L S.Updating models and their uncertainty. I:Bayesian statistical framework [J]. Journal of Engineering Mechanics, 1998,124(4):455-461.
[9] 韩芳,钟冬望,汪君.基于贝叶斯法的复杂有限元模型修正研究 [J].振动与冲击,2012,31(1):39-43.
HAN Fang,ZHONG Dongwang,WANG Jun. Complicated finite element model updating based on Bayesian method [J]. Journal of Vibration and Shock , 2012,31(1):39-43.
[10] Khodaparast H H,Mottershead J E,FrisWell M I. Perturbation methods for the estimation of parameter variability in stochastic model updating [J].Mechanical Systems and Signal Processing, 2008, 22(8):1751-1773.
[11] Hua X G, Ni Y Q, Chen Z Q, etal. An improved perturbation method for stochastic finite element model updating [J].International Journal for Numerical Methods in Engineering, 2008, 73(13):1845-1864.
[12] Husain N. A., Khodaparast H. Ouyang H, H.. Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment. Mechanical Systems and Signal Processing, 2012, 32:135-152.
[13] Hua X G, Wen Q, Ni Y Q, et al. Assessment of stochastically updated finite element models using reliability indicator. Mechanical Systems and Signal Processing, 2017, 82:217-229.
[14] Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis [J]. AIAA Journal, 1997, 35(4):727-735.
[15] 王登刚,秦仙蓉. 结构计算模型修正的区间反演方法 [J].振动工程学报,2004,17(2): 205-209.
WANG Denggang, QIN Xianrong. Interval method for computational model updating of dynamic structures [J].Journal o f Vibration Engineering,2004,17(2): 205-209.
[16] Fang S E, Zhang Q H, Ren W X. An interval model updating strategy using interval response surface models. Mechanical Systems and Signal Processing, 2015, 60-61:909-927.
[17] 骆勇鹏,黄方林,韩建平,等. 基于区间分析的不确定性参数识别方法[J].地震工程与工程振动,2016,36(3): 203-209.
LUO Yongpeng,HUANG Fanglin,HAN Jianping, et al. A method of uncertain parameter identification based on interval analysis [J].Earthquake Engineering and Engineering Dynamics,2016,36(3): 203-209.
[18] 姜东,费庆国,吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法 [J].振动工程学报,2015,28(3): 352-358.
JIANG Dong,FEI Qingguo,WU Shaoqing. Updating of structural dynamics model with uncertainty based on interval analysis [J].Journal o f Vibration Engineering,2015,28(3): 352-358.
[19] 沈展鹏,肖世富,刘信恩,等. 基于小样本信息的区间边界估计方法研究 [J].应用力学学报,2012,29(6): 692-699.
SHEN Zhanpeng XIAO Shifu LIU Xin’en,et al. Study on the approaches for interval-bound estimation based on small sample [J].Chinese Journal of Applied Mechanics,2012,29(6): 692-699.
[20] Fang S E, Perera R. A response surface methodology based damage identification technique [J]. Smart Materials and Structures, 2009, 18(6):065009.
[21] 魏锦辉,任伟新. 结构有限元模型修正的自适应响应面方法 [J].振动与冲击,2013,32(8):114-119.
WEI Jinhui,REN Weixin. Finite element model updating based on adaptive response surface method [J].Journal of Vibration and Shock,2013,32(8):114-119.
[22] Chen X J, Wang M C, Wu W K, et al. Structural design of beam transport system in SGⅢ facility target area. 2014, 89(12): 3095-3100.

PDF(1473 KB)

Accesses

Citation

Detail

段落导航
相关文章

/