以含裂纹故障的斜齿轮传动系统为研究对象,结合轮齿接触、弯曲、剪切、轴向压缩及基体弹性变形,提出了含裂纹故障斜齿轮副时变啮合刚度修正算法,并通过有限元法验证了算法的正确性,而后分析了不同长度、深度、角度等裂纹参数对斜齿轮啮合刚度的影响规律。在此基础上,综合考虑齿轮时变啮合刚度、静态传动误差、轴承支撑刚度及齿轮转子陀螺力等因素,基于轴系单元法建立了单级裂纹故障斜齿轮传动系统耦合动力学模型,采用Newmark-β法对系统动态特性进行分析,研究了裂纹参数对系统振动响应的影响。结果表明,随着裂纹深度及长度的增加,齿轮副啮合刚度有较大幅度的减小,系统时域响应中存在周期性冲击现象,频域响应中出现了以啮合频率为中心的调制边频带,研究结果可为含裂纹齿轮传动故障诊断提供理论依据。
Abstract
Focusing on a helical gear transmission system, a modified algorithm of the time-varying mesh stiffness of helical gears with crack fault was proposed.Considering the elastic deformation of tooth contact, bending, shear, axial compression and the wheel body, then the correctness of the algorithm was verified by using the finite element method.The influence of crack parameters, such as the length, depth and angle of crack, on the mesh stiffness of helical gears was analyzed.After that, a coupling dynamic model of the helical gear transmission system with crack fault was established based on the shafting element method.In this model, the factors such as the time-varying mesh stiffness, static transmission error, bearing stiffness, and the gyro force of gear rotor were taken into consideration.The dynamic characteristics of the system were analyzed by the Newmark-β method, then the effect of crack parameters on the vibration response of the system was studied.It is shown that the mesh stiffness of gears decreases with the depth and the length of the crack.There are some periodic impulses in the time domain.Moreover, the mesh frequency modulated sideband appears in the frequency domain.The research results can provide a theoretical basis for crack fault diagnosis of the gear transmission.
关键词
斜齿轮 /
裂纹故障 /
啮合刚度 /
耦合动力学模型 /
动态响应
{{custom_keyword}} /
Key words
Helical gear /
Crack fault /
Mesh stiffness /
Coupling dynamic model /
Vibration response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李润方, 王建军. 齿轮系统动力学: 振动、冲击、噪声[M]. 北京: 科学出版社, 1997.
[2] Yang D C H, Lin J Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics[J]. Journal of Mechanical Design, 1987, 109(2): 189-196.
[3] Chaari F, Fakhfakh T, Haddar M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[J]. European Journal of Mechanics - A/Solids, 2009, 28(3): 461-468.
[4] 万志国, 訾艳阳, 曹宏瑞, 等. 时变啮合刚度算法修正与齿根裂纹动力学建模[J]. 机械工程学报, 2013, 49(11): 153-160.
WAN Zhiguo, ZI Yanyang, CAO Hongrui, et al. Time-varying mesh stiffness algorithm correction and tooth crack dynamic modeling[J]. Journal of Mechanical Engineering, 2013, 49(11): 153-160.
[5] Chen Z, Shao Y. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis, 2011, 18(8): 2149-2164.
[6] Cui L, Huang J, Zhai H, et al. Research on the meshing stiffness and vibration response of fault gears under an angle-changing crack based on the universal equation of gear profile[J]. Mechanism and Machine Theory, 2016, 105: 554-567.
[7] 王旭, 伍星, 肖正明, 等. 含裂纹故障的齿轮系统动力学特性研究及其故障特征分析[J]. 振动与冲击, 2017, 36(9): 74-79.
WANG Xu, WU Xing, XIAO Zhengming, et al. Dynamic characteristics of a gear system with crack fault and its fault feature analysis[J]. Journal of Vibration and Shork, 2017, 36(9): 74-79.
[8] 马锐, 陈予恕. 含裂纹故障齿轮系统的非线性动力学研究[J]. 机械工程学报, 2011, 47(21): 84-90.
MA Rui, CHEN Yushu. Nonlinear Dynamic research on gear system with cracked failure[J]. Journal of Mechanical Engineering, 2011, 47(21): 84-90.
[9] Saxena A, Chouksey M, Parey A. Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system[J]. Mechanism and Machine Theory, 2017, 107: 261-273.
[10] Pandya Y, Parey A. Simulation of crack propagation in spur gear tooth for different gear parameter and its influence on mesh stiffness[J]. Engineering Failure Analysis, 2013, 30(30): 124-137.
[11] 冯刚, 李彦彬, 高虹霓, 等. 裂纹对弧齿锥齿轮扭转啮合刚度影响分析[J]. 振动与冲击, 2012, 31(8): 67-69.
FENG Gang, LI Yanbin, GAO Hongni, CHEN Zhanhui, et al. Effect of crack on torsional mesh stiffness of a pair of spiral bevel gears[J]. Journal of Vibration and Shork, 2012, 31(8): 67-69.
[12] Wan Z, Cao H, Zi Y, et al. Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears[J]. Mechanism and Machine Theory, 2015, 92: 447-463.
[13] 胡兴龙. 带齿根裂纹损伤的风电增速器振动特性研究[D]. 大连: 大连理工大学, 2015.
HU Xinglong. Research on vibration characteristics for wind power generator with gear root crack[D], Dalian: Dalian University of Technology, 2015.
[14] Han L, Qi H. Influences of tooth spalling or local breakage on time-varying mesh stiffness of helical gears[J]. Engineering Failure Analysis, 2017, 79: 75-88.
[15] Sainsot P, Velex P, Duverger O. Contribution of gear body to tooth deflections — a new bidimensional analytical formula[J]. Journal of Mechanical Design, 2010, 126(4): 748-752.
[16] 马辉, 朱丽莎, 王奇斌, 等. 斜齿轮–平行轴转子系统模态耦合特性分析[J]. 中国电机工程学报, 2012, 32(29): 131-136.
MA Hui, ZHU Lisha, WANG Qibin, et al. Modal coupling characteristic analysis of a helical gear rotor system with parallel shafts[J]. Proceedings of the CSEE, 2012, 32(29): 131-136.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}