考虑风-沙双向耦合作用大型风力机体系气动力分布研究

董依帆 柯世堂 杨青

振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 83-92.

PDF(2760 KB)
PDF(2760 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (16) : 83-92.
论文

考虑风-沙双向耦合作用大型风力机体系气动力分布研究

  • 董依帆  柯世堂  杨青
作者信息 +

A study on the aerodynamic distribution of a large wind turbine system considering wind-sand coupling effect

  • DONG Yifan,KE Shitang,YANG Qing
Author information +
文章历史 +

摘要

大型风力机体系属于典型风敏感结构,在风沙条件下易产生极端荷载效应,沙粒的附着亦会影响风的湍流特征并对体系产生附加冲击力,现行规范和文献均缺乏对大型风力机体系风-沙运动特征的系统研究。以南京航空航天大学自主研发的5MW水平轴风力机为对象,采用改进的k-ε湍流模型模拟来流风场,同时添加DPM自定义沙粒模型实现与来流空气的双相耦合,基于中、强、特强沙尘暴天气典型风速与沙粒粒径的组合工况,系统分析风-沙共同作用下水平轴风力机叶片与塔架的三维流场特性、表面沙粒分布、压力系数与载荷分布,最终提炼出风-沙荷载特征值随环境参数的变化规律。研究表明:相较于风荷载,沙荷载主要对风力机塔架中下部产生冲击作用;风沙共同作用后,大粒径沙粒在风力机塔架迎风面底部产生的荷载效应尤为显著,部分区域沙压系数可达0.517;沙粒冲击荷载与风荷载的比值最高可达22.57%。主要研究结论可为大型风力机结构风沙荷载取值提供科学依据。

Abstract

A large-scale wind turbine system is a typical wind-sensitive structure, and it is prone to extreme load effects under wind and sand conditions.Adhesion of sand particles will also affect the turbulence characteristics of the wind and cause additional impact on the system.Current regulations and literature are lacking on large-scale wind turbine systems.Taking the 5 MW horizontal-axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the object, a modified k-ε turbulence model was used to simulate the flow wind field, and a DPM-defined sand model was added to realize the biphase coupling with the incoming air.Combing typical wind speed and sand particle size in strong and extraordinarily strong dust and dust storms, systematic analysis of three-dimensional flow field characteristics, surface sand distribution, pressure coefficient and load distribution of wind turbine blades and towers under the combined action of wind and sand was performed.Finally, the effect of wind-sand load characteristics on the change of environmental parameters was obtained.The research shows that: compared with wind load, sand load mainly impacts the middle and lower part of the wind turbine tower; after the wind and sand work together, the load effect of large-size sand particles on the bottom of the wind turbine tower is particularly significant.The sand pressure coefficient can reach 0.517; the ratio of sand impact load to wind load can reach up to 22.57%.

关键词

大型风力机体系 / 数值模拟 / 风-沙共同作用 / 运动特征 / 气动力分布

Key words

  / large wind turbine system, numerical simulation, wind-sand interaction, movement characteristics, Aerodynamic distribution

引用本文

导出引用
董依帆 柯世堂 杨青. 考虑风-沙双向耦合作用大型风力机体系气动力分布研究[J]. 振动与冲击, 2019, 38(16): 83-92
DONG Yifan,KE Shitang,YANG Qing. A study on the aerodynamic distribution of a large wind turbine system considering wind-sand coupling effect[J]. Journal of Vibration and Shock, 2019, 38(16): 83-92

参考文献

[1] 薛桁, 朱瑞兆, 杨振斌,等. 中国风能资源贮量估算[J]. 太阳能学报, 2001, 22(2): 167-170.
Heng Xue, Ruizhao Zhu, Z Yang, et al. Assessment of Wind Energy Reserves In China[J]. Acta Energiae Solaris Sinica, 2001, 22(2): 167-170.
[2] Bagnold R A. The Movement of Desert Sand[J]. Geographical Journal, 1935, 85(4):342-365.
[3] Bagnold R A. The Transport of Sand by Wind[J]. Geographical Journal, 1937, 89(5):409-438.
[4] 亢力强. 风沙流中颗粒剪应力分析[J]. 工程热物理学报, 2011, 32(09): 1516-1518.
Liqiang Kang. Analysis of particle shear stress in windblown sand movement[J]. Journal of Engineering Thermophysics, 2011, 32(9): 1516-1518.
[5] 董玉祥,马骏. 输沙量对海岸沙丘表面风沙流中不同粒径沙粒垂向分布的影响[J]. 中山大学学报(自然科学版), 2009,48(03): 102-108.
Yuxiang Dong, Ma Jun A. Influence of Total Sand Transport Rates on the Vertical Distribution of Different Sand Grain Sizes in Wind-sand Flow on the Coastal Dune[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(3): 102-108.
[6] Owen P R. Saltation of uniform grains in ai[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242.
[7] 李凯崇, 薛春晓, 蒋富强,等. 高原与戈壁地区风沙流结构特性差异研究[J]. 铁道工程学报, 2014, 31(7): 7-11.
Chongkai Li I, Chunxiao Xue, Fuqiang Jiang, et al. Research on the Different Characteristics of Sand-drift between Gobi and Plateau[J]. Journal of Railway Engineering Society, 2014, 31(7): 7-11.
[8] 杨斌, 王元, 张洋. 风沙流中气固两相速度场的PIV-PLIF测量[J]. 西安交通大学学报, 2009, 43(07): 101-104.
Bing Yang, Yuan Wang, Yang Zhang. Simultaneous velocity measurements of gas-solid phases in eolian sediment transport by particle image velocimetry-planar laser induced fluorescence[J]. Journal of Xian Jiaotong University, 2009, 43(7): 101-104.
[9] Cheng J, Jiang F, Xue C, et al. Computational Method for Maximum Sediment Discharge and Sand-Carrying Wind Load in the Prevention and Treatment of Wind Drift Sand for Railway in Strong Wind Area[J]. China Railway Science, 2012, 33(1): 1-5.
[10] 李正农, 王尚雨, 宫博,等. 风沙对低矮建筑整体受力影响的风洞试验研究[J]. 土木工程学报, 2017, 50(1): 63-69.
Zhengnong. Li, Shangyu. Wang, Bo. Gong, et al. Wind tunnel test for impact of wind-sand flow on overall forces of low-rise building[J]. Tumu Gongcheng Xuebao/china Civil Engineering Journal, 2017, 50(1): 63-69.
[11] 王松涛. 高层建筑风沙流场的数值模拟[D]. 兰州大学, 2009.
Songtao Wang. Numerical simulation of wind-sand field around tall buildings [D] . Lanzhou: Lanzhou University, 2009.
[12] 李仁年, 范向增, 李德顺,等. 风沙环境下水平轴风力机的转矩特性[J]. 兰州理工大学学报, 2015, 41(4): 55-59.
Rennian Li, Xiangzeng Fan, Deshun Li, et al. Torque characteristics of horizontal-axis wind turbine in sand-blowing environment[J]. Journal of Lanzhou University of Technology, 2015, 41(4): 55-59.
[13] Shitang Ke, Wei Yu. Tongguang Wang, et al. The effect of blade positions on the aerodynamic performances of wind turbine system. Wind and Structures, An International Journal, 2017.24(3):205-221
[14] 唐国利, 巢清尘. 近48年中国沙尘暴的时空分布特征及其变化[J]. 应用气象学报, 2005, 16(b03): 128-132.
Guoli Tang, Qingchen Chao. The Temporal and Spatial Distribution Characteristics and Variation of Sandstorm in China in Recent 48 Years[J]. Journal of Applied Meteorology, 2005, 16(b03): 128-132.
[15] 戴雪荣, 师育新, 薛滨. 兰州现代特大尘暴沉积物粒度特征及其意义[J]. 兰州大学学报(自科版), 1995, 31(4): 168-174.
Xuerong Dai, Yuxin Shi, Bin Xue. Particle Size Characteristics and Its Significance of Modern Duststorms in Lanzhou[J]. Journal of Lanzhou University(Natural Science), 1995, 31(4): 168-174.
[16] 蒋富强, 李荧, 李凯崇,等. 兰新铁路百里风区风沙流结构特性研究[J]. 铁道学报, 2010, 32(03): 105-110.
Fuqiang, Jiang Ying Li, Chongkai Li, et al. Study on structural characteristics of Gobi wind sand flow in 100 km wind area along Lan-Xin Railway[J]. Journal of the China Railway Society, 2010, 32(3): 105-110.
[17] Gillette D A, Adams J, Muhs D, et al. Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air[J]. Journal of Geophysical Research Oceans, 1982, 87(C11):9003–9015.
[18] Wang Y, Ju C, Wang Q. Experimental study on the solid particle erosion of concrete, mortar and cement paste under blown sand environment[J]. Zhongguo Tiedao Kexue/china Railway Science, 2013, 34(5):21-26.
[19] GB50009-2012 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012
GB50009-2012 Building Structure Load Specification [S]. Beijing: China Building Industry Press, 2012
[20] 罗贝格. 弹性及弹-塑性介质中的冲击波[M]. 北京: 科学出版社, 1965
Robberg. Shock waves in elastic and elastic-plastic media [M]. Beijing: Science Press, 1965.

PDF(2760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/