[1] Gao, Z., C. Cecati, and S.X. Ding, A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches[J]. IEEE Transactions on Industrial Electronics, 2015. 62(6): p. 3757-3767.
[2] Lei, Y., et al., An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data[J]. IEEE Transactions on Industrial Electronics, 2016. 63(5): p. 3137-3147.
[3] Pan, W., et al., Online fault diagnosis for nonlinear power systems ☆[J]. Automatica, 2015. 55: p. 27-36.
[4] 江丽,郭顺生, 基于半监督拉普拉斯特征映射的故障诊断[J]. 中国机械工程, 2016. 27(14): p. 1911-1916.
Jiang Li, Guo Shun-sheng. Fault Diagnosis Based on Semi-supervised Laplacian Eigenmaps[J]. China Mechanical Engineering, 2016. 27(14): p. 1911-1916.
[5] Ramahaleomiarantsoa J F, Heraud N, Sambatara E J R, et al. Principal components analysis method application in electrical machines diagnosis[C]// 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO). 2011..
[6] Hyvärinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4):411-430.
[7] Zhi-Nong L I, Wang X Y, Zhang X G. Recognition Method of Rolling Bearing Fault Based on Kernel Principle Component Analysis[J]. Bearing, 2008.
[8] Hao T F, Guo C. Machinery fault diagnosis based on Bayes optimal kernel discriminant analysis[J]. Journal of Vibration & Shock, 2012, 31(13):26-30.
[9] Owsley L M D, Atlas L E, Bernard G D. Self-organizing feature maps and hidden Markov models for machine-tool monitoring[J]. Signal Processing IEEE Transactions on, 1997, 45(11):2787-2798.
[10] Cayton L. Algorithms for manifold learning[J]. Univ.of California at San Diego Tech.rep, 2005.
[11] Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2006, 15(6):1373-1396.
[12] 黄宏臣, 韩振南, 张倩倩,等. 基于拉普拉斯特征映射的滚动轴承故障识别[J]. 振动与冲击, 2015, 34(5):128-134.
Huang Hong-chen, Han Zhen-nan, Zhang Qian-qian, et al. Method of Fault Diagnosis for Rolling Bearings Based on Laplacian Eigenmap[J].Journal of Vibration and Shock,2015,34(5):128-134.
[13] 蒋全胜, 贾民平, 胡建中,等. 基于拉普拉斯特征映射的故障模式识别方法[J]. 系统仿真学报, 2008(20):5710-5713.
Jiang Quan-sheng, Jia Min-ping, Hu Jian-zhong, et al. Method of Fault Pattern Recognition Based on Laplacian Eigenmaps[J]. Journal of System SImulation, 2008(20):5710-5713.
[14] 李月仙, 韩振南, 黄宏臣,等. 基于拉普拉斯特征映射的旋转机械故障识别[J]. 振动与冲击, 2014, 33(18):21-25.
Li Yue-xian, Han Zhen-nan, Huang Hong-chen,et al. Fault diagnosis of rotating machineries based on Laplacian eigenmaps[J].Journal of Vibration and Shock, 2014, 33(18):21-25.
[15] Ng M K. A note on constrained k -means algorithms[J]. Pattern Recognition, 2000, 33(3):515-519..
[16] 王泽杰, 胡浩民. 流形学习算法中的参数选择问题研究[J]. 计算机应用与软件, 2010, 27(6):84-85..
Wang Ze-jie, Hu Hao-min. On Parameter Selection In Manifold Learning Algorithm[J].Computer Applications and Software, 2010, 27(6):84-85.
[17] 李昆仑, 曹铮, 曹丽苹,等. 半监督聚类的若干新进展[J]. 模式识别与人工智能, 2009, 22(5):735-742.
Li Kun-lun, Cao Zheng, Cao Li-ping,et al. Some Developments on Semi-Supervised Clustering[J].PR&AI, 2009, 22(5):735-742.
[18] 张永晶. 初始聚类中心优化的K-means改进算法[D]. 东北师范大学, 2013.
Zhang Yong-jing. Improved K-Means Algorithm Based on Optimizing Initial Cluster Centers[D]. Northeast Normal University,2013.
[19] Loparo K A. Bearings Vibration Data Set[DB/OL]. Cleveland, Ohio:Case Western Reserve University. [2014-10-28]. http://Csegroups. Case. Edu/Bearingdatacenter/Home.
[20] 李刚, 邢书宝, 薛惠锋. 基于RBF核的SVM及RVM模式
分析性能比较[J]. 计算机应用研究, 2009, 26(5):1782-1784.
Li Gang, Xing Shu-bao, Xue Hui-feng. Comparison on Pattern Analysis Performance of SVM and RVM Based on RBF Kemel[J]. Application Research of Computers, 2009, 26(5):1782-1784.
[21] 赵孝礼, 赵荣珍. 全局与局部判别信息融合的转子故障数据集降维方法研究[J]. 自动化学报, 2017, 43(4):560-567.
Zhao Xiao-li, Zhao Rong-zhen. A Method of DImension Reduction of Rotor Faults Data Set Based on Fusion of Global and Local Discriminant Information[J]. ACTA AUTOMATICA SINICA, 2017, 43(4):560-567.