剪切增稠液及其在抗冲击缓冲方面研究进展

陆振乾1,许 玥 2,孙宝忠3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 128-136.

PDF(2547 KB)
PDF(2547 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 128-136.
论文

剪切增稠液及其在抗冲击缓冲方面研究进展

  • 陆振乾1,许 玥 2,孙宝忠3
作者信息 +

Progress in shear thickening fluid study and its application in anti-impact and cushion areas

  • LU Zhenqian1 , XU  Yue2, Sun Baozhong3
Author information +
文章历史 +

摘要

剪切增稠液作为一种非牛顿流体,其独特的“流-固”转化流变性能引起了科学界广泛关注。近年来,将其应用到抗冲击缓冲领域更是成为了研究热点。但是,剪切增稠的机理和流变性能的控制仍有待于进一步探索。剪切增稠装备的工业化生产与相关器件的有效开发成为当前研究难点和挑战。本文重点对剪切增稠机理和性能进行综述分析,并综述了目前应用到防护、缓冲领域的最新研究进展,为开发新型抗冲击缓冲材料提供启示。

Abstract

As a non-Newton fluid, shear thickening fluid (STF) with its unique rheological properties of liquid-solid mutual conversion receives significant attention in scientific community.In recent years,application of STF in anti-impact and cushion areas becomes a research hotspot.But, STF’s shear thickening mechanism and control of rheological performance need further exploration.The industrialization production of shear thickening equipment and effective development of related devices are the difficulty of research and challenging.Here, reviewing and analyzing STF’s shear thickening mechanism and performance were focused on,and the latest studying progress about STF’s application in anti-impact and cushion areas was summarized and reviewed to provide an inspiration for the development of new anti-impact andcushion materials.

关键词

剪切增稠液 / 增稠机理 / 抗冲击 / 缓冲材料

Key words

  / shear thickening fluid; shear thickening mechanism ;impact resistance;cushion material

引用本文

导出引用
陆振乾1,许 玥 2,孙宝忠3. 剪切增稠液及其在抗冲击缓冲方面研究进展[J]. 振动与冲击, 2019, 38(17): 128-136
LU Zhenqian1,XU Yue2, Sun Baozhong3. Progress in shear thickening fluid study and its application in anti-impact and cushion areas[J]. Journal of Vibration and Shock, 2019, 38(17): 128-136

参考文献

[1] Barnes H. A. Shear‐Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids [J]. Journal of Rheology, 1989, 33(2):329-366.
[2] Brady John F, Georges Bossis. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation [J]. Journal of Fluid Mechanics, 1985, 155:105-129.
[3] Brown Eric, Heinrich M. Jaeger. The role of dilation and confining stresses in shear thickening of dense suspensions [J]. Journal of Rheology, 2012, 56(4):875-923.
[4] Cates Me, Jp Wittmer, J-P Bouchaud, et al. Jamming, force chains, and fragile matter [J]. Physical review letters, 1998, 81(9):1841.
[5] Lee Young S, Eric D Wetzel, Norman J Wagner. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid [J]. Journal of materials science, 2003, 38(13):2825-2833.
[6] Egres Jr Rg, Ys Lee, Je Kirkwood, et al. Liquid armor: protective fabrics utilizing shear thickening fluids [C].Proceeding of Industrial Fabrics Associational International Conference on Safety and Protective Fabrics. Pittsburgh. 2004.
[7] Xu Yue, Xiaogang Chen, Yan Wang, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid [J]. Composite Structures, 2017, 163:465-473.
[8] Asija Neelanchali, Hemant Chouhan, Shishay Amare Gebremeskel, et al. Impact Response of Shear Thickening Fluid (STF) Treated High Strength Polymer Composites – Effect of STF Intercalation Method [J]. Procedia Engineering, 2017, 173:655-662.
[9] Brown E., H. M. Jaeger. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming [J]. Rep Prog Phys, 2014, 77(4):046602.
[10] Lu Zhenqian, Xiaoying Jing, Baozhong Sun, et al. Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid [J]. Composites Science and Technology, 2013, 88:184-189.
[11] Zhang Xz, Wh Li, Xl Gong. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper [J]. Smart Materials and Structures, 2008, 17(3):035027.
[12] Gürgen Selim, Weihua Li, Melih Cemal Kuşhan. The rheology of shear thickening fluids with various ceramic particle additives [J]. Materials & Design, 2016, 104:312-319.
[13] Gong Xinglong, Qian Chen, Mei Liu, et al. Squeeze flow behavior of shear thickening fluid under constant volume [J]. Smart Materials and Structures, 2017, 26(6):065017.
[14] Kalman D. P., R. L. Merrill, N. J. Wagner, et al. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions [J]. ACS Appl Mater Interfaces, 2009, 1(11):2602-12.
[15] Sha Xiaofei, Kejing Yu, Haijian Cao, et al. Shear thickening behavior of nanoparticle suspensions with carbon nanofillers [J]. Journal of nanoparticle research, 2013, 15(7):1816.
[16] Egres Ronald G, Norman J Wagner. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition [J]. Journal of rheology, 2005, 49(3):719-746.
[17] Petel Oren E., Simon Ouellet, Jason Loiseau, et al. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction [J]. International Journal of Impact Engineering, 2015, 85:83-96.
[18] Peters I. R., S. Majumdar, H. M. Jaeger. Direct observation of dynamic shear jamming in dense suspensions [J]. Nature, 2016, 532(7598):214-7.
[19] Waitukaitis S. R., H. M. Jaeger. Impact-activated solidification of dense suspensions via dynamic jamming fronts [J]. Nature, 2012, 487(7406):205-9.
[20] Mukhopadhyay Shomeek, Benjamin Allen, Eric Brown. A shear thickening transition in concentrated suspensions under impact [J]. arXiv preprint arXiv:1407.0719, 2014.
[21] Rosen Brian A, Ch Nam Laufer, Dennis P Kalman, et al. Multi-threat performance of kaolin-based shear thickening fluid (STF)-treated fabrics [J]. Proceedings of SAMPE, 2007, 3(7).
[22] Hoffman Rl. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability [J]. Transactions of the Society of Rheology, 1972, 16(1):155-173.
[23] Chen Qian, Wei Zhu, Fang Ye, et al. pH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions [J]. Materials Research Express, 2014, 1(1):015303.
[24] Jiang W., F. Ye, Q. He, et al. Study of the particles' structure dependent rheological behavior for polymer nanospheres based shear thickening fluid [J]. J Colloid Interface Sci, 2014, 413:8-16.
[25] Hoffman Richard L. Discontinuous and dilatant viscosity behavior in concentrated suspensions III. Necessary conditions for their occurrence in viscometric flows [J]. Advances in colloid and interface science, 1982, 17(1):161-184.
[26] Brown E., N. A. Forman, C. S. Orellana, et al. Generality of shear thickening in dense suspensions [J]. Nat Mater, 2010, 9(3):220-4.
[27] Egres Ronald G, Florian Nettesheim, Norman J Wagner. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition [J]. Journal of Rheology, 2006, 50(5):685-709.
[28] Cheng Xiang, Jonathan H Mccoy, Jacob N Israelachvili, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions [J]. Science, 2011, 333(6047):1276-1279.
[29] Metzner Ab, Malcolm Whitlock. Flow behavior of concentrated (dilatant) suspensions [J]. Transactions of the Society of Rheology, 1958, 2(1):239-254.
[30] Cates Me, Md Haw, Cb Holmes. Dilatancy, jamming, and the physics of granulation [J]. Journal of Physics: Condensed Matter, 2005, 17(24):S2517.
[31] Fall Abdoulaye, N Huang, François Bertrand, et al. Shear thickening of cornstarch suspensions as a reentrant jamming transition [J]. Physical Review Letters, 2008, 100(1):018301.
[32] Brown Eric. Friction’s role in shear thickening [J]. Physics, 2013, 6:125.
[33] Jiang Weifeng, Guangjian Peng, Yi Ma, et al. Measuring the mechanical responses of a jammed discontinuous shear-thickening fluid [J]. Applied Physics Letters, 2017, 111(20):201906.
[34] Wetzel Eric D, Ys Lee, Rg Egres, et al. The Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)‐Kevlar Composites [C].AIP Conference Proceedings. 2004. AIP, 288-293.
[35] Maranzano Brent J., Norman J. Wagner. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions [J]. The Journal of Chemical Physics, 2001, 114(23):10514-10527.
[36] Maranzano Brent J., Norman J. Wagner. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions [J]. Journal of Rheology, 2001, 45(5):1205-1222.
[37] Hasanzadeh M., V. Mottaghitalab. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor [J]. Journal of Materials Engineering and Performance, 2014, 23(4):1182-1196.
[38] Moriana Alain D, Tongfei Tian, Vitor Sencadas, et al. Comparison of rheological behaviors with fumed silica-based shear thickening fluids [J]. Korea-Australia Rheology Journal, 2016, 28(3):197-205.
[39] Kang Tae Jin, Chang Youn Kim, Kyung Hwa Hong. Rheological behavior of concentrated silica suspension and its application to soft armor [J]. Journal of Applied Polymer Science, 2012, 124(2):1534-1541.
[40] Bragov A. M., A. K. Lomunov, I. V. Sergeichev, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9):967-976.
[41] Lim Amanda S., Sergey L. Lopatnikov, John W. Gillespie. Development of the split-Hopkinson pressure bar technique for viscous fluid characterization [J]. Polymer Testing, 2009, 28(8):891-900.
[42] Lim Amanda S., Sergey L. Lopatnikov, Norman J. Wagner, et al. Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique [J]. Rheologica Acta, 2010, 49(8):879-890.
[43] Lomakin E. V., P. A. Mossakovsky, A. M. Bragov, et al. Investigation of impact resistance of multilayered woven composite barrier impregnated with the shear thickening fluid [J]. Archive of Applied Mechanics, 2011, 81(12):2007-2020.
[44] Lim Amanda S, Bazle A Gama, John W Gillespie Jr. High strain rate compression-shear behavior of a shear-thickening fluid (STF) [J]. SAMPE 2006: Creating new opportunities for the world economy, 2006.
[45] Jiang Weifeng, Xinglong Gong, Shouhu Xuan, et al. Stress pulse attenuation in shear thickening fluid [J]. Applied Physics Letters, 2013, 102(10):101901.
[46] Cao Saisai, Qian Chen, Yunpeng Wang, et al. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid [J]. Composites Part A: Applied Science and Manufacturing, 2017, 100:161-169.
[47] Petel Oren E., James D. Hogan. An investigation of shear thickening fluids using ejecta analysis techniques [J]. International Journal of Impact Engineering, 2016, 93:39-48.
[48] Petel Oren E, Simon Ouellet, Jason Loiseau, et al. The effect of particle strength on the ballistic resistance of shear thickening fluids [J]. Applied Physics Letters, 2013, 102(6):064103.
[49] Gürgen Selim, Melih Cemal Kuşhan. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives [J]. Composites Part A: Applied Science and Manufacturing, 2017, 94:50-60.
[50] Gürgen Selim, Melih Cemal Kuşhan, Weihua Li. The effect of carbide particle additives on rheology of shear thickening fluids [J]. Korea-Australia Rheology Journal, 2016, 28(2):121-128.
[51] Nam Caroline H, Matthew J Decker, Christopher Halbach, et al. Ballistic and rheological properties of stfs reinforced by short discontinuous fibers [J]. Proceedings of SAMPE: New Horizons for materials and processing Technologies. Long Beach, CA: SAMPE, 2005.
[52] White Erica E Bischoff, Manoj Chellamuthu, Jonathan P Rothstein. Extensional rheology of a shear-thickening cornstarch and water suspension [J]. Rheologica acta, 2010, 49(2):119-129.
[53] Smith Mi, R Besseling, Me Cates, et al. Dilatancy in the flow and fracture of stretched colloidal suspensions [J]. Nature communications, 2010, 1:114.
[54] Chellamuthu Manojkumar, Eric M Arndt, Jonathan P Rothstein. Extensional rheology of shear-thickening nanoparticle suspensions [J]. Soft Matter, 2009, 5(10):2117-2124.
[55] Sun Liang‐Liang, Dang‐Sheng Xiong, Cai‐Yun Xu. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric [J]. Journal of Applied Polymer Science, 2013, 129(4):1922-1928.
[56] Wu Qiu-Mei, Jian-Ming Ruan, Bai-Yun Huang, et al. Rheological behavior of fumed silica suspension in polyethylene glycol [J]. Journal of Central South University of Technology, 2006, 13(1):1-5.
[57] Majumdar Abhijit, Bhupendra Singh Butola, Ankita Srivastava. Optimal designing of soft body armour materials using shear thickening fluid [J]. Materials & Design, 2013, 46:191-198.
[58] Majumdar Abhijit, Bhupendra Singh Butola, Ankita Srivastava. Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid [J]. Materials & Design (1980-2015), 2014, 54:295-300.
[59] Majumdar Abhijit, Bhupendra S. Butola, Ankita Srivastava, et al. Improving the impact resistance of p-aramid fabrics by sequential impregnation with shear thickening fluid [J]. Fibers and Polymers, 2016, 17(2):199-204.
[60] Decker M. J., C. J. Halbach, C. H. Nam, et al. Stab resistance of shear thickening fluid (STF)-treated fabrics [J]. Composites Science and Technology, 2007, 67(3-4):565-578.
[61] 陆振乾, 吴利伟, 孙宝忠, 等. 经编间隔织物增强柔性复合材料冲击性能 [J]. 复合材料学报, 2014, 31(5):1306-1311.
LU Zhenqian, WU Liwei, SUN Baozhong,  et al. Impact behaviors of warp knitted spacer fabric flexible composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1306-1311.
[62] Budden Graham. 防护与舒适并存的新型抗机械冲击防护服 [J]. 纺织导报, 2006(9) :62-67.
Budden Graham. Impact protection textile provides denfense and comfort[J]. China Textile Leader, 2006(9):62-67.
[63] Palmer Richard Martin, Philip Charles Green, Energy absorbing material. 2010, Google Patents.
[64] Zhang X. Z., W. H. Li, X. L. Gong. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper [J]. Smart Materials and Structures, 2008, 17(3):035027.
[65] Zhou Hong, Lixun Yan, Wanquan Jiang, et al. Shear thickening fluid–based energy-free damper: Design and dynamic characteristics [J]. Journal of Intelligent Material Systems and Structures, 2016, 27(2):208-220.
[66] 周鸿, 郭朝阳, 宗路航, 等. 剪切增稠液及阻尼器性能研究 [J]. 振动与冲击, 2013, 32(18):15-20.
ZHOU Hong, GUO Chaoyang, ZONG Luhang, et al. Performance of shear thickening fluid and a damper as its application [J]. Journal of Vibration and Shock, 2013, 32(18):15-20.
[67] Yeh Fang-Yao, Kuo-Chun Chang, Tsung-Wu Chen, et al. The dynamic performance of a shear thickening fluid viscous damper [J]. Journal of the Chinese Institute of Engineers, 2014, 37(8):983-994.
[68] Fischer Christian, Abdelkrim Bennani, Véronique Michaud, et al. Structural damping of model sandwich structures using tailored shear thickening fluid compositions [J]. Smart Materials and Structures, 2010, 19(3):035017.
[69] Tian Tf, Wh Li, Jie Ding, et al. Study of shear-stiffened elastomers [J]. Smart Materials and Structures, 2012, 21(12):125009.
[70] 蒋学争, 吴杰, 姚进. 一种基于剪切增稠液的智能减速带, CN204370342U[P]. 2015.
Jiang Xuezheng, Wu Jie, Yao Jin. An intelligent speed bump based on shear thickening fluid. CN204370342U[P]. 2015.

PDF(2547 KB)

Accesses

Citation

Detail

段落导航
相关文章

/