固支薄膜结构强非线性振动解析方法研究

李英民, 宋维举,王肖巍

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 144-148.

PDF(1691 KB)
PDF(1691 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 144-148.
论文

固支薄膜结构强非线性振动解析方法研究

  • 李英民, 宋维举,王肖巍
作者信息 +

Analytical solutions to strongly nonlinear vibration of a clamped membrane structure

  • LI Yingmin,   SONG Weiju,  WANG Xiaowei 
Author information +
文章历史 +

摘要

膜结构刚度小,柔度大,在外荷载作用下的振动幅值一般大于自身膜材的厚度,且薄膜振动微分方程非线性项系数远大于1,属于强非线性振动系统。针对传统摄动方法和小挠度理论求解薄膜结构强非线性振动问题的局限性,将薄膜大挠度理论和改进多重尺度法结合,考虑膜材的几何非线性和振动阻尼的影响,求解平坦固支薄膜结构的强非线性振动控制方程,得到结构强非线性振动频率及位移函数解析式,并将结果与传统KBM摄动法解和没有考虑振动阻尼的精确级数解进行对比。为进一步验证理论方法的适用性,选用ZZF膜材进行振动特性试验,进一步验证改进多重尺度法对平坦固支薄膜结构强非线性振动研究的适用性。

Abstract

Due to a membrane’s small stiffness and large flexibility, its vibration amplitude under external loads is generally larger than its thickness, and its vibration equation’s nonlinear term coefficient is much larger than 1, so it belongs to a strongly nonlinear vibration system.Here, aiming at the limitation of the traditional perturbation method and the small deflection theory being used to solve strongly nonlinear vibration problems, the membrane large deflection theory was combined with the modified multi-scale method to solve the strongly nonlinear vibration governing equation of a flat clamped membrane structure considering effects of its geometric nonlinearity and vibration damping.The obtained results were compared with those of the accurate series solutions achieved using the traditional KBM method, etc.To verify the applicability of the proposed theoretical method, ZZF membrane material was adopted to conduct tests, and get membrane’s vibration characteristics.The test results showed that the modified multi-scale method is applicable for studying strongly nonlinear vibration of clamped membrane structures.

关键词

膜结构 / 强非线性振动 / 改进多重尺度法 / 幅频响应

Key words

Membrane structure / strongly nonlinear vibration / Modified Multiple-scale method / Amplitude-frequency response

引用本文

导出引用
李英民, 宋维举,王肖巍. 固支薄膜结构强非线性振动解析方法研究[J]. 振动与冲击, 2019, 38(17): 144-148
LI Yingmin, SONG Weiju, WANG Xiaowei . Analytical solutions to strongly nonlinear vibration of a clamped membrane structure[J]. Journal of Vibration and Shock, 2019, 38(17): 144-148

参考文献

[1] 林文静, 陈树辉, 李森. 圆形薄膜自由振动的理论解[J]. 振动与冲击, 2009, 28(5):84-86.
Lin Wenjing, Chen Shuhui, Li Sen. Analytical solution of free vibration of circular membrane[J]. Journal of Vibration and Shock, 2009, 28(5):84-86.
[2] 潘钧俊, 顾明. 方形张拉膜自由振动的几何非线性影响[J]. 同济大学学报(自然科学版), 2007, 35(11):1450-1454.
Pan Junjun, Gu Ming. Geometric Nonlinear Effect to Square Tensioned Membrane’s Free Vibration[J]. Journal of Tongji University(Natural Science). 2007, 35(11):1450-1454.
[3] Liu Chang-jiang, Zheng Zhou-lian et al. Dynamic analysis for nonlinear vibration of prestressed orthotropic membrane structure with viscous damping[J]. International Journal of Structural Stability and Dynamics, 2013. 13(2):1-32.
[4] 刘长江. 建筑膜结构非线性振动及其预张力测量理论与试验研究[D]. 重庆: 重庆大学, 2012
Liu Changjiang. Theory and Test on Nonlinear Vibration and Pretension Measurement of Building Membrane Structure[D]. Chongqing: Chongqing University, 2012
[5] 谢元喜, 唐驾时. 用人工参数法求解一类强非线性自由振动问题. 振动与冲击[J], 2005, 24(4):106-107, 114.
Xie Yuanxi, Tang Jiashi. Solutions of a Strongly Nonlinear System by Using Artifical Parameter Method[J]. Journal of Vibration and Shock, 2005, 24(4):106-107, 114.
[6] Zheng Zhou-lian, Liu Chang-jiang, He Xiao-ting, et al. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection [J]. Mathematical Problems in Engineering, 2009, V2009.
[7] Jianjun Guo, Zhoulian Zheng, Song Weiju. An Impact Vibration Experimental Research on the Pretension Rectangular Membrane Structure[J].Advances in Materials Science & Engineering, 2015, 2015 (4) :1-8.
[8] P. B. Goncalves, R. M. Soares, and D. Pamplona. Nonlinear vibrations of a radially stretched circular hyper-elastic membrane[J]. Journal of Sound and Vibration, 2009, 327(1-2): 231-248.
[9] 乔磊, 谭峰, 杨庆山. 薄膜结构的动力反应分析[J]. 振动与冲击. 2011, 30(6) :109-113.
Qiao Lei, Tan Feng, Yang Qingshan. Dynamic analysis of membrane structures[J]. Journal of Vibration and Shock,  2011, 30(6) :109-113.
[10] 董继蕾, 陈盼, 沈火明. 参量对正交异性矩形膜结构非线性振动的影响[J]. 应用数学和力学. 2014 (s1):42-45
Dong Jilei, Chen Pan, Shen Huoming. Paremetric effects nonlinear vibration of orthotropic rectangular membrane structures[J]. Applied Mathematics and Mechanics. 2014 (s1):42-45.
[11] 武岳, 陈昭庆, 孙晓颖. 张拉膜结构风致动力灾变研究进展[J]. 哈尔滨工业大学学报. 2017, 49(6):1-9.
WU Yue, CHEN Zhaoqing, SUN Xiaoying. Advances on wind-induced dynamic disaster of tensioned membrane structures[J]. Journal of Harbin Institute of Technology.2017, 49(6):1-9.

PDF(1691 KB)

413

Accesses

0

Citation

Detail

段落导航
相关文章

/