混凝土直切槽平台巴西圆盘冲击劈裂拉伸断裂特性试验和数值模拟研究

张华,郑凯,王雷

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 149-155.

PDF(1578 KB)
PDF(1578 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 149-155.
论文

混凝土直切槽平台巴西圆盘冲击劈裂拉伸断裂特性试验和数值模拟研究

  • 张华,郑凯,王雷
作者信息 +

Tests and numerical simulation for splitting tensile fracture properties of  CSTFBD concrete specimen under impact loading

  • ZHANG Hua,  ZHENG Kai,  WANG Lei
Author information +
文章历史 +

摘要

采用变截面霍普金森压杆(SHPB),对高速冲击荷载下混凝土的断裂特性和裂纹演化进程进行了研究。对含复合型裂纹直切槽平台巴西圆盘(CSTFBD)进行劈裂拉伸试验,并结合理论研究了不同水灰比、不同应变率、不同预设裂纹长度和倾角对裂纹分布及断裂韧性的影响;采用扩展有限单元法(XFEM)模拟了具有不同预设裂纹倾角试件的开裂进程,得出开裂过程中试件内部的应力分布情况。结果表明,复合断裂韧性比对预制裂纹倾角的变化敏感,与裂纹长度和倾角呈负相关,而与应变率无关;次生裂纹的开裂并非发生在预设裂尖处,且裂纹倾角越大,裂尖应力集中越小、主裂纹发展越缓慢。

Abstract

Here, a split Hopkinson pressure bar (SHPB) was adopted to investigate fracture features and crack evolution process of concrete specimens under high speed impact loads.Dynamic splitting tensile tests were conducted for cracked straight-though flattened Brazilian disc (CSTFBD) with mixed mode pre-cracks, and effects of water-cement ratio, strain rate, pre-crack length and inclination on crack distribution and fracture toughness were theoretically studied.The extended finite element method (XFEM) was adopted to simulate crack cracking process of specimens with different pre-crack inclinations, and obtain stress distribution inside specimens.The results indicated that the compound fracture toughness ratio is sensitive to variation of pre-crack inclination, and negatively correlated to crack length and inclination, but not related to strain rate; secondary crack cracking does not happen at preset crack tip, the larger the crack inclination, the smaller the stress concentration at crack tip and the slower the main crack propagation.

关键词

直切槽平台巴西圆盘(CSTFBD) / 混凝土 / 霍普金森压杆(SHPB) / 断裂韧性 / 裂纹扩展 / 扩展有限元(XFEM)

Key words

cracked straight-though flattened Brazilian disc (CSTFBD) / concrete / split Hopkinson pressure bar (SHPB) / fracture toughness / crack propagation / extended finite element method (XFEM)

引用本文

导出引用
张华,郑凯,王雷. 混凝土直切槽平台巴西圆盘冲击劈裂拉伸断裂特性试验和数值模拟研究[J]. 振动与冲击, 2019, 38(17): 149-155
ZHANG Hua, ZHENG Kai, WANG Lei. Tests and numerical simulation for splitting tensile fracture properties of  CSTFBD concrete specimen under impact loading[J]. Journal of Vibration and Shock, 2019, 38(17): 149-155

参考文献

[1] Cui F Y, Vinci R P. A chevron-notched bowtie micro-beam bend test for fracture toughness measurement of brittle materials[J]. Scripta Materialia, 2017, 132:53-57.
[2] Akbardoost J, Ghadirian H R, Sangsefidi M. Calculation of the crack tip parameters in the holed‐cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017,40:1416-1427.
[3] Kaklis K, Saltas V, Mavriagiannakis S, et al. Using Acoustic Emissions to enhance Fracture Toughness Calculations for CCNBD Marble Specimens[J]. Frattura Ed Integrità Strutturale. 2017, XI(40): 1-17.
[4] Markides C F, Pasiou E D, Kourkoulis S K. The bi-material circular disc compressed between the jaws of the ISRM standardized apparatus for the Brazilian test[J]. Procedia Structural Integrity. 2016, 2: 2881-2888.
[5] Guo H, Aziz N I, Schmidt L C. Rock fracture-toughness determination by the Brazilian test[J]. Engineering Geology, 1993, 33(3):177-188.
[6] Wang Q Z, Xing L. Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks[J]. Engineering Fracture Mechanics. 1999, 64(2): 193-201.
[7] Abshirini M, Soltani N, Marashizadeh P. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method[J]. Optics & Lasers in Engineering. 2016, 78: 99-105.
[8] Luo L, Li X, Qiu J, et al. Study on Fracture Initiation and Propagation in a Brazilian Disc with a Preexisting Crack by Digital Image Correlation Method[J]. Advances in Materials Science and Engineering,2017,(2017-5-24). 2017, 2017(4): 1-13.
[9] Ketheeswaran J, Behraftar S, Scheuermann A. Investigating the Failure Mode during Crack Propagation Using Image Analyses[J]. Applied Mechanics & Materials. 2016, 846: 366-371.
[10] Mishra S, Chakraborty T, Matsagar V. Dynamic Characterization of Himalayan Quartzite Using SHPB[J]. Procedia Engineering, 2017, 191:2-9.
[11] Schuler H, Mayrhofer C, Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J]. International Journal of Impact Engineering, 2006, 32(10):1635-1650.
[12] Pan J H, Chen X D. Numerical simulation of dynamic fracture toughness test using three-point bending specimen in SHPB[J]. Chinese Journal of High Pressure Physics, 2013, 27(6):856-862.
[13] Tang Z, Li D. Experimental investigation of axial impact buckling response of pseudo-elastic NiTi cylindrical shells[J]. International Journal of Impact Engineering, 2012, 39(1):28-41.
[14] Qi P, Qin-Yong M A, Pu Y. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3):401-407.
[15] Malik A, Chakraborty T, Rao K S, et al. Experiments to Determine Static and Dynamic Tensile Strength of Deccan Trap Rocks, India[J]. Procedia Engineering, 2017, 191:946-953.
[16] 牛卫晶, 闫晓鹏, 张立军,等. 高应变率下混凝土动态拉伸性能的实验研究[J]. 太原理工大学学报, 2006, 37(2):238-241.
Niu Jingjing, Yan Xiaopeng, Zhang Lijun, et al. Study on dynamic tensile properties of concrete under high strain rate [J]. Journal of Taiyuan University of Technology, 2006, 37 (2): 238-241. (in Chinese)
[17] 樊鸿,张盛,王启智.用直裂缝平台巴西圆盘确定混凝土的动态起裂韧度[J]. 水力学报,2010,41(10):1234-1240.
Fan Hong, Zhang Sheng, Wang Qizhi. Determination of Dynamic Toughness of Concrete with Brazil Disk with Straight Crack Plane [J]. Materia Sinica, 2010,41 (10): 1234-1240. (in Chinese)
[18] Zhou Z, Zhou Y, et al. Stress evolution and failure process of Brazilian disc under impact[J]. Journal of central south university. 2013, 20(1): 172-177.
[19] Chen X, Ge L, Zhou J, et al. Dynamic Brazilian test of concrete using split Hopkinson pressure bar[J]. Materials & Structures. 2017, 50(1): 1.
[20] Aliha M R M, Pakzad R, Ayatollahi M R. Numerical Analyses of a Cracked Straight-Through Flattened Brazilian Disk Specimen under Mixed-Mode Loading[J]. Journal of Engineering Mechanics. 2014, 140(1): 219-224.
[21] Pourya K, Mehrnoosh H. Numerical and experimental studies on the effect of loading angle on the validity of flattened Brazilian disc test[J]. 2016, 8(1): 1-12.
[22] 方新宇, 许金余, 刘石,等. 岩石动态劈裂试验的最优试件尺寸分析[J]. 振动与冲击, 2014, 33(21):73-79.
Fang Xinyu, Xu Jinyu, Liu Shi, et al. The optimal specimen size analysis of rock dynamic splitting test [J]. vibration and impact, 2014, 33 (21): 73-79.
[23] Wang M, Cao P. Numerical Analysis of Flattened Brazilian Disc Test Based on the Cusp Catastrophe Theory[J]. Mathematical Problems in Engineering,2016,(2016-7-31). 2016, 2016(7): 1-9.
[24] Li X F, Li H B, Zhao J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers & Geotechnics. 2017, 90: 96-112.
[25] Xu N W, Dai F, Wei M D, et al. Numerical Observation of Three-Dimensional Wing Cracking of Cracked Chevron Notched Brazilian Disc Rock Specimen Subjected to Mixed Mode Loading[J]. Rock Mechanics & Rock Engineering. 2016, 49(1): 79-96.
[26] Gui Y L, Bui H H, Kodikara J, et al. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model[J]. International Journal of Impact Engineering, 2016, 87:146-155.
[27] Ma J F, Xu J C, Zhang X L, et al. Study on Pre-Crack Marble Brazilian Disc Crack with SHPB Experiment and Numerical Simulation[C]. 2016.
[28] Sukumar N, Prévost J H. Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation[J]. International Journal of Solids & Structures. 2003, 40(26): 7513-7537.
[29] Sukumar N, Mo?s N, Moran B, et al. Extended finite element method for three‐dimensional crack modelling[J]. International Journal for Numerical Methods in Engineering. 2015, 48(11): 1549-1570.
[30] 方修君, 金峰, 王进廷. 用扩展有限元方法模拟混凝土的复合型开裂过程[J]. 工程力学, 2007, 24(z1):46-52.
FANG Xiu-Jun, JIN Feng, WANG Jin-Ting. Complex Cracking Process of Concrete with Extended Finite Element Method [J]. Engineering Mechanics, 2007, 24 (z1): 46-52. (in Chinese)
[31] Grégoire D, Maigre H, Réthoré J, et al. Dynamic crack propagation under mixed-mode loading – Comparison between experiments and X-FEM simulations[J]. International Journal of Solids & Structures, 2007, 44(20):6517-6534.
[32] Wang Y, Xia Y, Dong S. Stress intensity factors for central cracked circular disk subjected to compression[J]. Engineering Fracture Mechanics, 2004, 71(7):1135-1148.
[33] Dong S, Wang Y, Xia Y. A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic fracture behavior of brittle polymer materials[J]. Polymer Testing, 2006, 25(7):943-952.
[34] 张华, 郭继鑫, 傅玉珍,等. 冲击作用下混凝土裂纹扩展试验研究及数值模拟[J]. 振动与冲击, 2016, 35(17):107-112.
Zhang Hua, Guo Jixin, Fu Yuzhen, et al. Experimental study and numerical simulation of concrete crack propagation under impact. [J]. vibration and impact, 2016, 35 (17): 107-112.
[35] Farnam Y, Mohammadi S, Shekarchi M. Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite[J]. International Journal of Impact Engineering, 2010, 37(2):220-229.

PDF(1578 KB)

Accesses

Citation

Detail

段落导航
相关文章

/