反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究

邱文亮, 田 甜, 张 哲

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 156-164.

PDF(1997 KB)
PDF(1997 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 156-164.
论文

反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究

  • 邱文亮, 田 甜, 张 哲
作者信息 +

Experimental study on the seismic behavior of steel tube reinforced concrete bridge columns under cyclic loading

  • QIU Wen-liang , TIAN Tian, ZHANG Zhe
Author information +
文章历史 +

摘要

为研究钢管混凝土组合桥墩的抗震性能,完成了8个剪跨比λ=3.0方形截面桥墩试件的低周反复加载试验。基于试件的破坏特征及荷载-位移滞回曲线,分析了内置核心钢管对钢筋混凝土桥墩抗震性能的改善作用,讨论了轴压比、配箍率、纵筋率和钢管埋置长度对组合桥墩抗震性能的影响。结果表明:在墩身内埋置核心钢管可避免桥墩发生竖向压溃和弯剪破坏,同时提高试件的承载力、变形和耗能能力,并减小卸载后的残余位移;轴压比大的组合桥墩试件承载力高、耗能能力强,但变形能力差且残余位移大;随着配箍率或纵筋率的增加,滞回曲线的饱满度变好,变形和耗能能力得到提高;核心钢管在墩身内的埋置长度是决定组合桥墩破坏形态和抗震性能的重要因素,随着钢管埋置长度的增加,组合桥墩试件的破坏形态由剪切型转化为弯曲型,其各项抗震性能指标随之得到改善。

Abstract

To investigate the seismic behavior of steel tube reinforced concrete (STRC) bridge column, eight square column specimens with a shear span ratio of 3.0 were tested under simulated seismic loading conditions.Based on the observed failure patterns and the obtained force-displacement hysteretic curves, the effectiveness of core steel tube in improving the seismic resistance of reinforced concrete (RC) bridge column is evaluated.In addition, the effects of axial load ratio, stirrup ratio, longitudinal steel ratio, and core steel tube embedment length on the seismic behavior of STRC bridge column are also examined.Test results demonstrate that accompany by eliminating the combined failure mode of vertical crushing and flexural-shear in the RC counterpart, incorporating a core steel tube in the column can enhance the column lateral strength, deformability, energy dissipation, and self-centering capacity.Despite a larger lateral strength and a higher energy dissipation, the STRC column that sustained a higher axial load ratio exhibited relatively poor ductility and self-centering capacity.With the increase of stirrup ratio or longitudinal steel ratio, the hysteretic curvesof STRC bridge column became plumper, and the deformability and energy dissipation capacity were also improved.Core steel tube embedment length is of an essential structural parameter in determining the failure mode and therefore the seismic behavior of STRC bridgecolumn, as thisvariable increased, each seismic performance index of STRC bridge column was significantlyimproved because of the change of failure mode from brittle shear to ductile flexure.

关键词

钢-混凝土组合桥墩 / 抗震性能 / 拟静力试验 / 破坏形态 / 滞回曲线

Key words

 steel-concrete composite bridge column / seismic behavior / pseudo-static test / failure mode / hysteretic curves

引用本文

导出引用
邱文亮, 田 甜, 张 哲. 反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究[J]. 振动与冲击, 2019, 38(17): 156-164
QIU Wen-liang, TIAN Tian, ZHANG Zhe. Experimental study on the seismic behavior of steel tube reinforced concrete bridge columns under cyclic loading[J]. Journal of Vibration and Shock, 2019, 38(17): 156-164

参考文献

[1]  范立础. 桥梁抗震[M]. 上海: 同济大学出版社, 1997.
FAN Li-chu. Seismic Resistance of Bridges[M]. Shanghai: Tongji University Press, 1997.
[2]  刘健新, 赵国辉. 5.12汶川地震典型桥梁震害分析[J]. 建筑科学与工程学报, 2009, 26(2): 92-97.
LIU Jian-xin, ZHAO Guo-hui. Typical bridge damage analysis in “5.12” Wenchuan earthquake[J]. Journal of Architecture and Civil Engineering, 2009, 26(2): 92-97.
[3]  YAO T H, CHUNG C F. Seismic effect on highway bridges in Chi Chi Earthquake[J]. Journal of Performance of Constructed Facilities, 2004, 18(1): 869-879.
[4]  QIU W L, KAO C S, KOU C H, et al. Experimental study of seismic performances of RC bridge columns with CFST column embedded inside[J]. Journal of Marine Science and Technology, 2015, 23(2): 212-219.
[5]  QIU W L, JIANG M, PAN S S, et al. Seismic responses of composite bridge piers with CFT columns embedded inside[J]. Steel and Composite Structures, 2013, 15(3): 343-355.
[6]  CECS 188:2005 钢管混凝土叠合柱结构技术规程[S]. 北京:中国计划出版社, 2005: 55-56.
CECS 188:2005 Technical specification for steel tube-reinforced concrete column structure[S]. Beijing: China Planning Press, 2005: 55-56.
[7]  李惠, 吴波, 林立岩. 钢管高强混凝土叠合柱的抗震性能研究[J]. 地震工程与工程振动, 1998, 18(1): 45-52.
LI Hui, WU Bo, LIN Li-yan. Study on seismic properties of laminated column with high strength concrete containing steel tube[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1): 45-52.
[8]  赵国藩, 张德娟, 黄承逵. 钢管砼增强高强砼柱的抗震性能研究[J]. 大连理工大学学报, 1996, 36(6): 759-766.
ZHAO Guo-fan, ZHANG De-juan, HUANG Cheng-kui. Study of earthquake resistant behavior of high strength concrete column reinforced with concrete filled steel tube[J]. Journal of Dalian University of Technology, 1996, 36(6): 759-766.
[9]  聂建国, 柏宇, 李胜勇, 等. 钢管混凝土核心柱轴压组合性能分析[J]. 土木工程学报, 2005, 38(9): 9-13.
NIE Jian-guo, BAI Yu, LI Sheng-yong, et al. Analyses on composite column with inside concrete filled steel tube under axial compression[J]. China Civil Engineering Journal, 2005, 38(9): 9-13.
[10] 钱稼茹, 康洪震. 钢管高强混凝土组合柱抗震性能试验研究[J].建筑结构学报, 2009, 30(4): 85-93.
QIAN Jia-ru, KANG Hong-zhen. Experimental study on seismic behavior of high strength concrete-filled steel tube composite columns[J]. Journal of Building Structures, 2009, 30(4): 85-93.
[11] HAN L H, LIAO F Y. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending[J]. Journal of Constructional Steel Research, 2009, 65(2009): 1607-1616.
[12] 郭全全, 李芊, 章沛瑶, 等. 钢管混凝土叠合柱偏心受压承载力的计算方法[J]. 土木工程学报, 2014, 47(5): 56-63.
GUO Quan-quan, LI Qian, ZHANG Pei-yao, et al. Calculation for bearing capacity of steel tube reinforced concrete columns under eccentric compression[J]. China Civil Engineering Journal, 2014, 47(5): 56-63.
[13] JI X D, KANG H Z, CHEN X C, et al. Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 487-505.
[14] JTG/T B02-01—2008 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008: 39-40.
JTG/T B02-01—2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008: 39-40.
[15] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3): 155-166.
[16] PAULTRE P, EID R, ROBLES Hugo Ita, et al. Seismic performance of circular high-strength concrete columns[J]. ACI Structure Journal, 2009, 106(4): 395-404.
[17] 张冬杰, 韩强, 杜修力, 等. FRP布约束RC矩形空心桥墩抗震性能试验研究[J]. 振动与冲击, 2013, 32(22): 152-157.
Zhang Dong-jie, Han Qiang, Du Xiu-li, et al. Tests for performance of RC rectangular hollow bridge piers constrained with FRP[J]. Journal of Vibration and Shock, 2013, 32(22): 152-157.
[18] FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe Earthquake. I: residual inclination of reinforced concrete piers[J]. Journal of Bridge Engineering, 2005, 10(1): 45-53.
[19] 司炳君, 牛敬涵, 孙治国, 等. 配置竖向无粘结预应力筋的RC桥墩残余变形研究[J]. 振动与冲击, 2017, 36(6): 75-85.
Si Bing-jun, Niu Jing-han, Sun Zhi-guo, et al. Residual displacement of RC bridge piers with vertical unbonded prestressing strands[J]. Journal of Vibration and Shock, 2017, 36(6): 75-85.
 

PDF(1997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/