一种可改善传动稳定性的混合励磁型磁齿轮研究

井立兵1,2,陈俊霖1,张廷1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 178-183.

PDF(1105 KB)
PDF(1105 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 178-183.
论文

一种可改善传动稳定性的混合励磁型磁齿轮研究

  • 井立兵1,2,陈俊霖1,张廷1
作者信息 +

Hybrid excitation magnetic gears for improving transmission stability

  • JING Libing1,2, CHEN Junlin1,  ZHANG Ting1
Author information +
文章历史 +

摘要

同轴磁齿轮是一种结构新颖的传动装置,在低速大转矩传动领域具有广阔应用前景。针对传统表贴式磁齿轮气隙磁密谐波含量高、转矩脉动大的问题,本文提出了一种内磁极为偏心表贴式,外磁极为永磁体励磁和电励磁两种磁化方式的同轴式磁齿轮。利用有限元法计算了传统型、开槽未加电流型和开槽加电流型磁齿轮的气隙磁场和电磁转矩,对内、外层气隙磁密的谐波含量进行了分析。仿真结果表明,偏心磁极结构有利于改善内层磁密波形,降低谐波畸变率;增加电流励磁不仅能保证输出转矩,而且能降低转矩脉动。这对提高同轴磁齿轮的传动稳定性具有重要意义。

Abstract

Coaxial magnetic gear is a novel transmission device with wide application prospects in low speed and large torque transmission field.Here, in order to solve the problem of traditional surface mounted magnetic gear having high harmonic content and large torque ripple in air-gap magnetic density,a coaxial magnetic gear with eccentric surface mounted inner magnetic pole  and external magnetic pole magnetized by two modes of permanent magnet and electric excitation was proposed.The finite element method was used to calculate air-gap magnetic field and electromagnetic torque of traditional type, slotted without current type and slotted current type magnetic gears, and harmonic contents of inner layer air-gap magnetic density and outer onewereanalyzed.The simulation results showed that the eccentricmagnetic pole structure is beneficial to improve inner layer magnetic density waveform and reduce its harmonic distortion rate; increasing current excitation can not only guarantee output torque but also reduce torque ripple,this is of great significance for improving the transmission stability of coaxial magnetic gears.

关键词

同轴磁齿轮 / 偏心磁极 / 转矩脉动 / 气隙磁场 / 畸变率

Key words

coaxial magnetic gear / eccentric magnetic pole / torque ripple / air-gap magnetic field / aberration rate

引用本文

导出引用
井立兵1,2,陈俊霖1,张廷1 . 一种可改善传动稳定性的混合励磁型磁齿轮研究[J]. 振动与冲击, 2019, 38(17): 178-183
JING Libing1,2, CHEN Junlin1, ZHANG Ting1. Hybrid excitation magnetic gears for improving transmission stability[J]. Journal of Vibration and Shock, 2019, 38(17): 178-183

参考文献

[1] 李直腾, 杨超君, 郑武, 等. 磁力齿轮传动的发展概况与展望[J]. 微电机, 2011, 44(2):78-83.
LI Zhiteng, YANG Chaojun, ZHENG Wu, et al. Develo- pment and application of magnetic gear transmission [J]. Micromotors, 2011, 44(2):78-83.
[2] 张东, 邹国棠, 江建中, 等. 新型外转子磁齿轮复合电机的设计与研究[J]. 中国电机工程学报, 2008, 28 (30):67-72.
ZHANG Dong, ZHOU Guotang, JIANG Jianzhong, et al. Design and research of a novel magnetic-geared outer rotor compact machine [J]. Proceedings of the CSEE, 2008, 28 (30):67-72.
[3] 葛研军, 聂重阳, 辛强. 调制式永磁齿轮气隙磁场及转矩分析计算[J]. 机械工程学报, 2012, 48(11):153- 158.
GE Yanjun, NIE Chongyuan, XIN Qiang. Analytical calculation of air gap magnetic field and torque of modulated permanent magnetic gears [J]. Chinese Journal of Mechanical Engineering, 2012, 48(11):153- 158.
[4] 付兴贺, 王标, 林明耀. 磁力齿轮发展综述[J]. 电工技术学报, 2016, 31(18):1-12.
FU Xinghe, WANG Biao, LIN Mingyao. Overview and recent developments of magnetic gears [J]. Transactions of China Electrotechnical Society, 2016, 31(18):1-12.
[5] ATALLAH K, HOWE D. A novel high-performance magnetic gear[J]. IEEE Transactions on magnetics, 2002, 37(4):2844-2846.
[6] Atallah K, Wang J, Howe D. A high-performan- ce linear magnetic gear[J]. Journal of Applied Physics, 2005, 97(10):10N516.
[7] Rasmussen P O, Andersen T O, Jorgensen F T, et al. Development of a high-performance magnetic gear[J]. IEEE Transactions on Industry Applications, 2005, 41(3):764-770.
[8] Mezani S, Atallah K, Howe D. A high-performance axial-field magnetic gear[J]. Journal of Applied Physics, 2006, 99(8):08R303.
[9] Jian L, Chau K T. A coaxial magnetic gear with Halbach permanent magnet arrays [J]. IEEE Transactions on Energy Conversion, 2010, 25(2):319-328.
[10] 井立兵, 柳霖, 章跃进, 等. Halbach阵列同心式磁力齿轮参数分析与优化设计[J]. 电机与控制学报, 2016, 20(03):6-12.
JING Libing, LIU Lin, ZHANG Yuejin, et al. Paramet- ers analysis and optimization design for concentric magnetic gear with Halbach permanent-magnet arrays [J]. Electric Machines and Control, 2016, 20 (03):6-12.
[11] Zhang X. X, Liu X, Chen Z. et al. A novel dual-flux-modulator coaxial magnetic gear for high torque capability [J]. IEEE Transactions on Energy Conversion, 2018, 33(02):682-691.
[12] 杜世勤. 新型磁齿轮复合电机的设计研究[D]. 上海, 上海大学, 2010.
DU Shiqin. Research and design on a permanent magnet electrical machine combined with a magnetic gear [D]. Shanghai, Shanghai University, 2010.
[13] 张秀文. 高性能磁力齿轮的传动性能分析与实验研究 [D]. 江苏, 江苏大学, 2016.
ZHANG Xiuwen. Research on performance analysis and experiment of the high-performance magnetic gear [D]. Jiangsu, Jiangsu University, 2016.
[14] NIGUCHI N,HIRATA K,HAYAKAWA Y. Study on transmission torque characteristics of a surface perman- ent magnet type magnetic gear [J]. IEEE Transactions on Industry Applications, 2011, 131(3):396-402.
[15] 胡月菊, 方瑞明, 叶志军. 不同磁极结构对高速永磁同步电动机磁场影响分析[J]. 微特电机, 2015, 43(5):30-32.
HU Yueju, FANG Ruiming, YE Zhijun. Influence of different magnetic structures on magnetic field of high-speed permanent magnet motor [J]. Small & Special Electrical Machines, 2015, 43(5):30-32.
[16] 张颖, 林明耀. 定子齿表面开槽对永磁无刷直流电机齿槽转矩的影响[J]. 电气技术, 2008(1):16-19.
ZHANG Ying, LIN Mingyao. Influence of slotting on the teeth on the cogging torque of permanent magnetic brushless DC motor [J]. Electrical Engineering, 2008 (1):16-19.
[17] 左文全, 吕艳博, 付向东,等. 无轴承永磁薄片电机径向悬浮力精确数学建模[J]. 中国电机工程学报, 2012, 32(3):103-110.
ZUO Wengquan, LV Yanbo, FU Xiangdong, et al. Accu- rate mathematical modeling of radial suspension force on bearingless permanent magnet slice motors [J]. Proceedings of the CSEE, 2012, 32(3):103-110.
[18] Amrhin M, Krein P T. Force calculation in 3-D magnetic equivalent circuit networks with a maxwell stress tensor[J]. IEEE Transactions on Energy Conversion, 2009, 24(3):587-593.

PDF(1105 KB)

Accesses

Citation

Detail

段落导航
相关文章

/