超磁致伸缩激振器的结构优化及动态性能研究

王安明 1,4,孟建军 1,2,3,胥如迅 1,2,何昌雪 1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 184-190.

PDF(1344 KB)
PDF(1344 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 184-190.
论文

超磁致伸缩激振器的结构优化及动态性能研究

  • 王安明 1,4 , 孟建军 1,2,3,胥如迅 1,2,何昌雪 1
作者信息 +

Structural optimization and dynamic performance of a giant magnetostrictive vibration exciter

  • WANG Anming1,4,MENG Jianjun1,2,3,XU Ruxun1,2,HE Changxue1
Author information +
文章历史 +

摘要

超磁致伸缩激振器的结构决定其动态性能。为了提高激振器的动态性能,其驱动线圈采用减少匝数、增加线径、大电流驱动的设计方案。采用叠片式GMM棒,计算了它的几何参数,并选取了最佳的预压应力和磁场强度;设计驱动线圈时考虑了温度的影响,优化了它的几何尺寸和磁路设计,驱动磁场由方波信号叠加直流分量产生;建立了激振器的数学模型,用MATLAB进行了仿真,分析了其阶跃响应。实验表明,激振器的动态性能显著提高,应用效果到达了振动时效的要求。研究结果为超磁致伸缩激振器的结构优化与设计提供参考依据,具有重要的工程应用价值。

Abstract

The dynamic performance of a giant magnetostrictivevibration exciter depends upon its structure.Here, in order to improve its dynamic performance,its driving coil’s design scheme ofreducing turn number, increasing wire diameter and large currentdriving was adopted.Laminated GMM rod was adopted and its geometric parameters were calculated, and the optimal pre-compression stress and magnetic field intensity were selected.Effects of temperature were considered during designing the driving coil, and its geometric size and magnetic circuit design were optimized.The driving magnetic field was generated through superimposinga square wave signaland a DC component.The mathematical model of the vibration exciter was established, and simulated with MATLAB.Its step response was analyzed.Test results showed that the dynamic performance of the vibration exciter is obviously improved and its application effect can meet the requirements of vibration ageing; the results can provide a basis for structural optimization and design of giant magnetostrictive vibration exciters, so they are valuable for engineering application.

关键词

超磁致伸缩材料 / 激振器 / 结构优化 / 阶跃响应 / 幅频特性

Key words

 giant magnetostrictive material / vibrator / structure optimization / step response / amplitude frequency characteristics

引用本文

导出引用
王安明 1,4,孟建军 1,2,3,胥如迅 1,2,何昌雪 1. 超磁致伸缩激振器的结构优化及动态性能研究[J]. 振动与冲击, 2019, 38(17): 184-190
WANG Anming1,4,MENG Jianjun1,2,3,XU Ruxun1,2,HE Changxue1. Structural optimization and dynamic performance of a giant magnetostrictive vibration exciter[J]. Journal of Vibration and Shock, 2019, 38(17): 184-190

参考文献

[1] 刘春泽,杨雪梅,周红生,等. 振动时效技术研究进展[J]. 声学技术,2017,36(1):42-47.
LIU Chunze,YANG Xuemei,ZHOU Hongsheng,et al. Review of vibration stress relief technology[J].Technical Acoustics,2017,36(1):42-47.
[2] 刘晓丹,陶兴华,韩振强.振动时效工艺在消除膨胀波纹管残余应力中的应用[J].振动与冲击,2015,34(4):171-174.
LIU Xiaodan,TAO Xinghua,HAN Zhengiang.Application of vibratory stress relief in relaxation of residual stress for expandable corrugated liners[J].Journal of Vibration and Shock,2015,34(4):171-174.
[3] 杨艳慧,赵兴东,刘东,等.振动时效消除GH4169合金辗扩成形环件的残余应力的试验研究[J].振动与冲击,2017,36(4):105-109.
YANG Yanhui,ZHAO Xingdong,LIU Dong,et al.Vibratory stress relief of rolling formed GH4169 alloy ring[J].Journal of Vibration and Shock,2017,36(4):105-109.
[4] 贾振元,郭东明. 超磁致伸缩材料微位移执行器原理与应用[M]. 北京:科学出版社,2008.
JIA Zhenyuan,GUO Dongming. Theory and application of giant magnetostrictive microdisplacement actuators[M]. Beijing:Science Press,2008.
[5] Wang B W,BUSBRIDGE S C,Li Y X,et al. Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2 single crystal[J]. Journal of Magnetism and Magnetic Materials,2000,218(2/3):198-202.
[6] 徐峰,张虎,蒋成保,等. 超磁致伸缩材料作动器的研制及特性分析[J]. 航空学报,2002,23(6):552-555.
XU Feng,ZHANG Hu,JIANG Chengbao,et al. Designing and performance research of giant magnetostrictive actuators[J]. Acta Aeronautica et Astronautica Sinica,2002,23(6):552-555.
[7] 鞠晓君,林明星,范文涛,等. 超磁致伸缩致动器结构分析及输出力特性研究[J]. 仪器仪表学报,2017,38(5):1198-1206.
JU Xiaojun,LIN Mingxing,FAN Wentao,et al.Structure analysis and output force characteristic study of giant magnetostrictive actuator[J]. Chinese Journal of Scientific Instrument,2017,38(5):1198-1206.
[8] 何忠波,荣策,李冬伟,等. 叠堆式超磁致伸缩致动器磁场分布建模及分析[J]. 光学精密工程,2017,25(9):2347-2358.
HE Zhongbo,RONG Ce,LI Dongwei,et al. Modeling and analysis of magnetic field distribution forstack giant magnetostrictive actuators[J]. Optics and Precision Engineering,2017,25(9):2347-2358.
[9] 邬义杰,刘楚辉. 超磁致伸缩驱动器设计准则的建立[J]. 工程设计学报,2011,34(4):187-191.
WU Yijie,LIU Chuhui. Establishment of designing rules for giant magnetostrictive actuators[J]. Journal of Engineering Design,2011,34(4):187-191.
[10] 李琳,陈亮良,杨勇. 超磁致伸缩作动器的结构分析[J]. 北京航空航天大学学报,2013,39(9):1269-1274.
LI Lin,CHEN Liangliang,YANG Yong.Structural analysis giant magnetostrictive actuators[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(9):1269-1274.
[11] Jiang X Y,Lu Q G,Chen D F,et al.The influencing factors on the axial magnetic field distribution charaeteristics of GMA[J].Advanced Materials Research,2010,16(2):801-804.
[12] 崔旭,何忠波,李冬伟,等. 超磁致伸缩致动器建模研究综述[J]. 兵器材料科学与工程,2011,34(4):90-93.
CUI Xu,HE Zhongbo,LI Dongwei,et al. Research  review of modeling for giant magnetostrictive actuator [J]. Ordnance Material Science and Enginering,2011,34(4):90-93.
[13] 朱金才,顾仲权. 磁致伸缩作动器的设计及其动态特性研究[J]. 南京航空航天大学学报,1998,30(4):413-418.
ZHU Jincai,GU Zhongquan. Design and Experimental Study for Dynam ic Characteristics of Magnetostrictive Actuator[J]. Journal of Nanjing University of Aeronautics and Astronautics,1998,30(4):413-418.
[14] 田春,汪鸿振. 超磁致伸缩执行器的自由能磁滞模型的数值实现[J]. 机械科学与技术,2005,24(6):650-652.
TIAN Chun,WANG Hongzhen. Numerical Method for Free Energy Hysteresis Model in Giant Magnetostrictive Actuators[J]. Mechanical Science and Technology,2005,24(6):650-652.
[15] 唐志峰,项占琴,吕福在. 稀土超磁致伸缩执行器优化设计及控制建模[J].中国机械工程,2005,16(9):753-757.
TANG Zhifeng,XIANG Zhanqin,LV Fuzai. Optimal design of magnetostrictive actuator and its control model[J]. China Mechanical Engineering,2005,16(9):753-757.
[16] 张旭辉. 超磁致伸缩作动器优化及主动隔振控制研究[D]. 北京:北京航天航空大学自动化科学与电气工程学院,2008.
ZHANG Xuhui. Study on crucial technology of active vibration isolation system based on structure-optimized giant magnetostrictive actuator [D]. Beijing:Beijing University of Aeronautics and Astronautics,School of Automation Science and Electrical Engineering,2008.
[17] 刚宪约,梅德庆,陈子辰,等. 超磁致伸缩微致动器的磁场有限元分析. 中国机械工程,2003,14(22):1961-1963.
GANG Xianyue,MEI Deqing,CHEN Zichen,et al. Finite element analysis for magnetic field of giant magnetostrictive actuator[J]. China Mechanical Engineering,2003,14(22):1961-1963.
[18] 薛光明,张培林,何忠波,等. 强偏置超磁致伸缩致动器准静态位移建模与试验[J]. 农业机械学报,2015,46(7):318-323.
   XUE Guangming,ZHANG Peilin,HE Zhongbo,et al.Modeling and experiment of strong bias giant magnetostrictive actuator’s semi-static displacement[J].Transaction of the Chinese Society for Agricultural Machinery,2015,46(7):318-323.
[19] 陶孟仑,陈定方,卢全国,等.超磁致伸缩材料动态涡流损耗模型及试验分析[J].机械工程学报,2012,48(13):146-151.
    TAO Menglun,CHEN Dingfang,LU Quanguo,et al.Eddy current losses of giant magnetostrictors:modeling and experimental analysis[J].Journal of Mechanical engineering,2012,48(13):146-151.
[20] GB/T 25712-2010. 振动时效工艺参数选择及效果评定方法[S]. 北京: 标准出版社,2010.
GB/T 25712-2010. Vibratory stress relief technology parameter selection and effect evaluation methods[S]. Beijing:China Standard Press,2010.

PDF(1344 KB)

Accesses

Citation

Detail

段落导航
相关文章

/