基于格点型有限体积法的滑动轴承油膜压力特性分析

杨国栋1,曹贻鹏1,明平剑1,张文平1,李燎原2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 191-196.

PDF(2019 KB)
PDF(2019 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 191-196.
论文

基于格点型有限体积法的滑动轴承油膜压力特性分析

  • 杨国栋1,曹贻鹏1,明平剑1,张文平1,李燎原2
作者信息 +

Analysis of oil film pressure characteristics of journal bearing based on the cell-vertex finite volume method

  • YANG Guodong1, CAO Yipeng1, MING Pingjian1, ZHANG Wenping1, LI Liaoyuan2
Author information +
文章历史 +

摘要

为将非结构化网格技术应用于滑动轴承的油膜压力分析,本文提出将格点型有限体积法应用于雷诺方程的求解,采用形函数导数的方法计算压力梯度,采用多重网格法求解方程组,进而得到轴承的液膜压力分布。通过与相关算例的对比和分析,验证了格点型有限体积法的适用性、精度及对非结构化网格的适应性,并对不同网格类型下的计算时间进行了对比,随后将该算法应用于内燃机主轴承油膜压力的求解,结果表明,增大偏心率会导致油膜压力会逐渐增大,而增大倾斜角会对油膜压力分布产生较明显影响。

Abstract

In order to apply the unstructured grid technique to analyze oil film pressure in journal bearings, the cell-vertex finite volume method (CVFVM) was proposed here to solve Reynolds equations.The shape function derivative was used to calculate pressure gradient, the multi-network method was used to solve equation set, and obtain a journal bearing’s oil film pressure distribution.Through comparison and analysis of corresponding examples, the applicability, accuracy and adaptability to the unstructured grid of CVFVM were verified, and the computing time for different grid types was compared.Finally, this proposed method was used to solve the oil film pressure distribution of an internal combustion engine’s main bearing.The results showed that increase in eccentricity can cause oil film pressure to gradually rise,while increase in inclination angle can obviously affect oil film pressure distribution.

关键词

格点型有限体积法 / 滑动轴承 / 油膜压力 / 非结构化网格

Key words

cell- vertex finite volume method / journal bearing / oil film pressure / unstructured grids

引用本文

导出引用
杨国栋1,曹贻鹏1,明平剑1,张文平1,李燎原2. 基于格点型有限体积法的滑动轴承油膜压力特性分析[J]. 振动与冲击, 2019, 38(17): 191-196
YANG Guodong1, CAO Yipeng1, MING Pingjian1, ZHANG Wenping1, LI Liaoyuan2. Analysis of oil film pressure characteristics of journal bearing based on the cell-vertex finite volume method[J]. Journal of Vibration and Shock, 2019, 38(17): 191-196

参考文献

[1] 陈燕生, 沈心敏. 摩擦学基础[M]. 北京航空航天大学出版社, 1991:73~74
CHEN Yansheng, SHEN Xinmin. Tribology basis[M]. Beihang University Press, 1991:52~53
[2] 温诗铸,黄平.摩擦学原理[M]. 4版. 北京:清华大学出版社,2017:45~56
   Wen Shizhu, Huangping. Principles of tribology [M]. Beijing: Higher Education Press, 2017:45~56
[3] Sun J, Gui C. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation[J]. Tribology International, 2004, 37(10):841-848.
[4] Sun J, Gui C, Li Z, et al. Influence of Journal Misalignment Caused by Shaft Deformation under Rotational Load on Performance of Journal Bearing[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994-1996 (vols 208-210), 2005, 219(4):275-283..
[5] Wang X L, Zhang J Y, Dong H. Analysis of bearing lubrication under dynamic loading considering micropolar and cavitating effects[J]. Tribology International, 2011, 44(9):1071-1075.
[6] Ma Y Y. Performance of dynamically loaded journal bearings lubricated with couple stress fluids considering the elasticity of the liner[J]. 浙江大学学报:a卷英文版, 2008, 9(7):916-921.
[7] 于如飞, 陈渭. 表面织构参数对径向轴承流体动力润滑特性的影响[J]. 西华大学学报:自然科学版, 2017, 36(3):23-29.
YU Rufei, Chen WEI. Effect of the Parameters of Surface Textures on the Hydrodynamic Lubrication Characteristics of Radial Bearing[J]. Journal of Xihua University, 2017.
[8] 董宁, 王优强, 刘前,等. 新型水润滑轴承材料的流体润滑性能分析[J]. 润滑与密封, 2016, 41(5):23-26.
Dong N, Wang Y, Liu Q, et al. Hydrodynamic Lubrication Properties of New Water Lubricated Journal Bearing Materials[J]. Lubrication Engineering, 2016.
[9] 汤占岐. 关节轴承非牛顿流体润滑与摩擦研究及寿命预测[D].合肥工业大学,2017.
TANG Zhanqi. Research on Lubrication and Friction of Spherical Plain Bearing Lubricated with Non-Newtonian Fluid and Service Life Prediction [D] HeFei University of Technology, 2017
[10] 肖敏, 严志军, 林助军,等. 凹槽缺陷对径向轴承润滑影响的模拟研究[J]. 润滑与密封, 2015(2):23-27.
Xiao M, Yan Z, Lin Z, et al. Study of Groove Defects Effect on Journal Bearing Lubrication by Simulation Method[J]. Lubrication Engineering, 2015.
[11] Willis T, Seth B. An Application of the Finite Element Method to EHD Lubrication[J]. A S L E Transactions, 1977, 20(4):340-346.
[12] Liu W K, Xiong S, Guo Y, et al. Finite element method for mixed elastohydrodynamic lubrication of journal-bearing systems[M]// International Journal for Numerical Methods in Engineering. :1759–1790.
[13] XiaolanAi, Cheng H, DongyunHua, et al. A Finite Element Analysis of Dynamically Loaded Journal Bearings in Mixed Lubrication[J]. A S L E Transactions, 1998, 41(2):273-281.
[14] Fatu A, Hajjam M, Bonneau D. A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings[J]. Journal of Tribology, 2006, 128(1):53-54.
[15] Wada S, Hayashi H, Migita M. Application Bulletin of the JSME of Finite-Element Method to Hydrodynamic Lubrication Problems : Part 1, Infinite-Width Bearings[J]. Bulletin of Jsme, 2008, 14(77):1222-1233.
[16] Jing-feng Gong, Ling-kuan Xuan, Ping-jian Ming, et al. Application of the Staggered Cell-Vertex Finite Volume Method to Thermoelastic Analysis in Heterogeneous Materials[J]. Journal of Thermal Stresses, 2014, 37(4):506-531.
[17] Xuan L K, Ming P J, Gong J F, et al. A Finite Volume Time Domain Method for In-Plane Vibration on Mixed Grids[J]. Journal of Vibration & Acoustics, 2014, 136(1):011003.

PDF(2019 KB)

Accesses

Citation

Detail

段落导航
相关文章

/