基于时频分析的高温振动环境螺栓连接件松动判别

曹芝腑1,2,谭志勇3,姜 东1,4,何顶顶1,2,费庆国1,

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 205-210.

PDF(1573 KB)
PDF(1573 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 205-210.
论文

基于时频分析的高温振动环境螺栓连接件松动判别

  • 曹芝腑1,2,谭志勇3,姜  东1,4,何顶顶1,2,费庆国1,
作者信息 +

Loosening discrimination of a bolted connector under high-temperature vibration environment based on time-frequency analysis

  • CAO Zhifu1,2,TAN Zhiyong3, JIANG Dong1,4,HE Dingding1,2,FEI Qingguo1
Author information +
文章历史 +

摘要

针对某型复合材料螺栓连接件,研究其在高温环境下的振动特性,为表征其松动特性提供理论和试验依据。本文利用振动控制系统,温度控制系统和非接触式激光测量系统实现了1000°C高温环境下的复合材料螺栓连接件振动试验。并利用短时傅里叶方法提取高温环境下的振动响应特征量,结合复合材料连接件的振动基频,二倍频幅值和二倍频与基频幅值的比值对连接结构的松动状态进行综合评判。试验结果表明,在连接件宏观松动现象非明显情况下,本文所提评判方法能够综合评估复合材料螺栓连接件在高温振动环境下的松动特性。

Abstract

Here, vibration features of a certain type composite bolted connector were studied under high-temperature vibration environment to provide theoretical and test basis for judging its loosening features.Using a vibration control system, a temperature control system and a non-contact laser measurement system, vibration tests of the connector under 1 000 ℃ high-temperature environmentwere conducted.The short-time Fourier transformation method was applied to extract its vibration response characteristic quantities under high-temperature environment.The fundamental natural frequency, the amplitude of the second natural frequency component and the amplitude ratio between those of the second one and the fundamental one of the bolted connecter were used to judge its loosening state.The test results showed that under the condition of its macroscopic loosening phenomenon being not obvious, the proposed method can be used to comprehensively evaluate loosening features of the composite bolted connector under high-temperature vibration environment.

关键词

复合材料 / 高温振动 / 连接松动 / 时频分析

Key words

Composites / High temperature vibration / Connection loosening / Time-frequency analysis

引用本文

导出引用
曹芝腑1,2,谭志勇3,姜 东1,4,何顶顶1,2,费庆国1,. 基于时频分析的高温振动环境螺栓连接件松动判别[J]. 振动与冲击, 2019, 38(17): 205-210
CAO Zhifu1,2,TAN Zhiyong3, JIANG Dong1,4,HE Dingding1,2,FEI Qingguo1. Loosening discrimination of a bolted connector under high-temperature vibration environment based on time-frequency analysis[J]. Journal of Vibration and Shock, 2019, 38(17): 205-210

参考文献

[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报. 2007, 24(1): 1-12.
DU Shan-yi. Advanced composite materials and aerospace engineering [J]. Acta Materiae Compositae Sinica. 2007, 24(1):1-12. (in Chinese)
[2] 姜东, 吴邵庆, 费庆国, 等.蜂窝夹层复合材料不确定性参数识别方法[J].振动与冲击, 2015, 34(2): 14-19.
JIANG Dong, WU Shao-qing, FEI Qing-guo, et al. Parameter identification approach of honeycomb sandwich composite with uncertainties[J]. Journal of Vibration and Shock, 2015, 34(2): 14-19.
[3] 雷宝灵, 易茂中, 徐惠娟.C/C复合材料飞机刹车盘的三维温度场[J]. 复合材料学报, 2009, 26(1): 113-117.
LEI Bao-ling, YI Mao-zhong, XU Hui-juan. 3-D temperature field for C/C composite braking discs [J]. Acta Materiae Compositae Sinica. 2009, 26(1): 113-117. (in Chinese)
[4] 刘冬欢, 郑小平, 王飞, 等.内置高温热管C/C复合材料热防护结构热力耦合机制[J]. 复合材料学报, 2010, 27(3): 43-49.
LIU Dong-huan, ZHENG Xiao-ping, WANG Fei, et al. Mechanism of thermomechanical coupling of high temperature heat pipe cooled C/C composite material thermal protection structure [J]. Acta Materiae Compositae Sinica, 2010, 27(3): 43-49. (in Chinese)
[5] Périé J N, Calloch S, Cluzel C, et al. Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model[J]. Experimental Mechanics, 2002, 42(3): 318-328.
[6] Chowdhury N, Chiu W K, Wang J. Review on the Fatigue of Composite Hybrid Joints Used in Aircraft Structures[C]. Advanced Materials Research. Trans Tech Publications, 2014, 891: 1591-1596.
[7] Thoppul S D, Finegan J, Gibson R F. Mechanics of mechanically fastened joints in polymer–matrix composite structures–a review [J]. Composites Science and Technology, 2009, 69(3): 301-329.
[8] 王志强. 复合材料层压板螺栓连接性能分析[D]. 哈尔滨工程大学, 2010.
WANG Zhi-qiang. Properties Analysis of the Composites Laminates Bolted Joint [D]. Harbin Engineering University, 2010. (in Chinese)
[9] 陈学前, 杜强, 冯加权.螺栓连接非线性振动特性研究[J] .振动与冲击, 2009, 28(7):196-198.
CHEN Xue-qian, DU Qiang, FENG Jia-quan. Nonlinear vibrational characteristic of bolt-joints [J]. Journal of Vibration and Shock, 2009, 28(7): 196-198. (in Chinese)
[10] 郝淑英, 陈予恕, 张琪昌.连接结构松动对系统非线性动力学特性的影响[J]. 天津大学学报, 2001, 34(4):452-454
HAO Shu-ying, CHEN Yu-shu, ZHANG Qi-chang. Effects of Connect Loosing and Sliding on Dynamic Characteristics [J]. Journal of Tianjin University, 2001, 34(4):452 -454 (in Chinese)
[11] 董广明, 陈 进, 雷宣扬, 等. 基于小波包-神经网络方法的支撑座连接螺栓松动损伤诊断的实验研究[J]. 机械科学与技术, 2006, 25(1): 102-106.
DONG Guang-ming, CHEN Jin, LEI Xuan-yang, et al. Experimental study on diagnosing the attachment bolt looseness in a clamping support based on wavelet packet transformation and neural network [J]. Mechanical Science and Technology, 2006, 25(1): 102-106. (in Chinese)
[12] Pai P F, Palazotto A N. HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems [J]. International Journal of Mechanical Sciences, 2008, 50(12): 1619-1635.
[13] Lv J X, Xiao Y, Xue Y D. Time-temperature-dependent response and analysis of preload relaxation in bolted composite joints[J]. Journal of Reinforced Plastic and Composites, 2018, 37(7): 460-474.
[14] 赵登峰, 曾国英. 振动环境中螺纹联结松动过程的研究[J]. 振动与冲击, 2010, 29(10): 175-178.
ZHAO Deng-feng, ZENG Guo-ying. Unintentional unscrewing of screw joints under vibration condition [J]. Journal of Vibration and Shock, 2010, 29(10): 175-178. (in Chinese)
[15] Li Q K, Jing X J. A second-order output spectrum approach for fault detection of bolt loosening in a satellite-like structure with a sensor chain[J]. Nonlinear Dynamics, 2017, 89:587-606.
[16] Nguyen T C, Huynh T C, Yi J H, et al. Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses[J]. Wind and Structures, 2017, 24(4): 385-403.
[17] Amerini F, Meo M. Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods[J]. Structural Health Monitoring, 2011, 10(6): 659-672.
[18] Kim J Y, Baltazar A, Hu J W, et al. Hysteretic linear and nonlinear acoustic response from pressed interfaces[J]. International Journal of Solids and Structures, 2006, 43(21): 6436-6452.
[19] Drinkwater B W, Dwyer-Joyce R S, Cawley P. A Study of the Interaction between Ultrasound and a Partially Contacting Solid-Solid Interface[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1996, 452(1955): 2613-2628.
[20] Amerini F, Barbieri E, Meo M, et al. Detecting loosening/tightening of clamped structures using nonlinear vibration techniques[J]. Smart Materials and Structures, 2010, 19(8): 085013-1-9.
[21] Gabor D. Theory of communication. Part I: The analysis of information[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(26): 429-441.

PDF(1573 KB)

454

Accesses

0

Citation

Detail

段落导航
相关文章

/