多跨布置式环网柔性被动网结构数值计算方法

赵雅娜 余志祥 赵世春

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 211-219.

PDF(2524 KB)
PDF(2524 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 211-219.
论文

多跨布置式环网柔性被动网结构数值计算方法

  • 赵雅娜 余志祥 赵世春
作者信息 +

Numerical computing method for a flexible passive network structure with multi-span distributed ring-net

  • ZHAO Yana, YU Zhixiang,  ZHAO Shichun
Author information +
文章历史 +

摘要

本文提出了一种基于环形网分块变形特征的环网计算模型以及组合耗能单元计算模型的设计和验证多跨布置式环网柔性被动网结构的数值方法。首先开展了“松柔支撑”环形网动力冲击试验以和1500kJ多跨布置式柔性被动网结构的全尺寸动力冲击试验,采集了部件及结构动力响应结果作为数值计算方法的校准标准;然后,构建了以组合耗能单元计算模型和分区域环形网计算模型为主的数值建模方法,并通过试验数据确定了关键参数的取值方法;最后开展了“松柔支撑”环形网冲击试验和1500kJ全尺寸冲击试验数值模拟,从整体结构变形过程、最大变形量和主要构件动力响应等方面逐步验证了数值方法的可靠性。结果表明,利用基本构件数值模型所建立的结构计算模型,能较好的反映结构冲击动力响应过程,可以作为结构设计和校验的有效手段。

Abstract

Here, a numerical approach was proposed for design and verification of a flexible passive network structure with multi-span distributed ring-net based on the ring-net computing model with partitioned deformation feature and the combined energy-dissipating element computing model.Firstly, dynamic impact tests for two groups ring-net with “loose boundary” and 1 500 kJ full-scale impact tests on a flexible passive network structure with multi-span were conducted.The dynamic response results of components and structures were collected as the calibration standards of the numerical computing method.Then, the numerical modeling method was constructed based on the ring-net computing model with partitioned deformation and the combined energy-dissipating element computing model.The method of taking value for key parameters was determined with test data.Finally, numerical simulations were performed for the two dynamic impact tests mentioned above.The reliability of the proposed numerical method was verified using the overall structure deformation process, the maximum deformation value and main components’ dynamic responses.The results showed that the structure’s computing model built with basic components’ numerical models can better reflect the structure ’s impact dynamic response process, and can be taken as effective means of structural design and verification.

关键词

柔性防护系统 / 环形网 / 数值计算

Key words

flexible protection system;ring-net / numerical simulation calculation

引用本文

导出引用
赵雅娜 余志祥 赵世春. 多跨布置式环网柔性被动网结构数值计算方法[J]. 振动与冲击, 2019, 38(17): 211-219
ZHAO Yana, YU Zhixiang, ZHAO Shichun. Numerical computing method for a flexible passive network structure with multi-span distributed ring-net[J]. Journal of Vibration and Shock, 2019, 38(17): 211-219

参考文献

[1]. EOTA, ETAG 27. Guideline for European technicalapproval of falling rock protection kits [S]. European Organization for Technical Approvals, 2012.
[2]. Volkwein A, Gerber W. Stronger and lighter—evolution of flexible rockfall protection systems [R]. In IABSE-IASS 2011 London Symposium Report: Taller, Longer, Lighter; IABSE: Zurich, Switzerland, 2011
[3]. Cazzani A, Mongiovì L, Frenez T. Dynamic finite element analysis of interceptive devices for falling rocks. Int J Rock Mech Mining Sci 2002;39:303–21.
[4]. Volkwein A, Roth A, Gerber W, Vogel A. Flexible rockfall barriers subjected to extreme loads. Struct Eng Int 2009;19:327–31.
[5]. Oggeri C, Peila D, Valfré A. Calcolo e dimensionamento di barriere paramassi arete. Le Strade 2006;10:158–64.
[6]. Govoni L, de Miranda S, Gentilini C, Gottardi G, Ubertini F. Modelling of fallingrock protection barriers. Int J Phys Modell Geotech 2011;11:126–37.
[7]. 杨建荣,白羽,杨晓东,等.柔性棚洞结构落石冲击数值模拟与试验研究[J].振动与冲击, 2017, 36(9): 172-178.
YANGJian-rong,BAI Yu,YANG Xiao-dong,et al.Numerical simulation and tests for flexible rock shed subjected to rockfall impact[J].Journal of Vibration and Shock,2017,36(9):172-178.
[8]. Hearn G, Barret RK, McMullen ML. Flexpost rockfall fence development, testing, and analysis, rockfall prediction and control and landslide case histories. Transportation Research Record 1343.
[9]. Nicot F, Cambou B, Mazzoleni G. From a constitutive modelling of metallic rings to the design of rockfall restraining nets. Int J Numer Anal Methods Geomech 2001;25:49–70.
[10]. Spadari M, Giacomini A, Buzzi O, Hambleton JP. Prediction of the bullet effect for rockfall barriers: a Scaling Approach. Rock Mech Rock Eng 2012;45:131–44.
[11]. Bertrand D, Trad A, Limam A, Silvani C. Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale. Rock Mech Rock Eng. doi: http://dx.doi.org/10.1007/s00603-012-0222-5.
[12]. 赵世春, 余志祥, 赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学, 2016, 33(10):24-34.
Zhao S C, Zhi-Xiang Y U, Lei Z, et al. DAMAGE MECHANISM OF ROCKFALL BARRIERS UNDER STRONG IMPACT LOADING[J]. Engineering Mechanics, 2016.
[13]. 齐欣, 孟庆成, 许浒,等. 被动柔性防护网结构的累计抗冲击性能研究[J]. 岩石力学与工程学报, 2017, 36(11):2788-2797.
QI Xin,MENG Qingcheng,XU Hu,ZhAO Lei. Researchon Cumulative Impact Resistance of Passive Flexible Protective Structure. Journal of Rock Mechanics & Geotechnical Engineering, 2017, 36(11):2788-2797
[14]. 齐欣, 余志祥, 许浒,等. 被动柔性防护网结构足尺冲击试验研究[J]. 铁道标准设计, 2016, 60(7):24-29.
QI Xin,Yu Zhixiang,Xu Hu,Study on full scale impact test of passive flexible protective net structure[J]. Railway Standard Design. 2016, 60(7):24-29.
[15]. 齐欣, 余志祥, 许浒,等. 被动柔性拦截网在长昆线某边坡防护工程中的应用[J]. 防灾减灾工程学报, 2016, v.36(2):302-308.
QI Xin,Yu Zhixiang,Xu Hu. Application of passive flexible interceptor in a slope protection project of Chang-Kunming railway line[J]. Journal of Disaster Prevention and Mitigation Engineering. 2016, v.36(2):302-308.
[16]. TB/T 3089-2004, 铁路沿线斜坡柔性安全防护网[S].北京: 中国铁道出版社, 2004.
JT/T528-2004, Component of flexible system for protecting highway slope [S]. Beijing: China Communication Press, 2004. (in Chinese)
[17]. Gentilini C, Gottardi G, Govoni L, et al. Design of falling rock protection barriers using numerical models[J]. Engineering Structures, 2013, 50(3):96-106.
[18]. Grassl H, Volkwein A, Bartelt P. Experimental and Numerical Modeling of Highly Flexible Rockfall Protection Barriers Modelo experimental y numérico de desprendimiento de rocas alta-mente[J]. 2003.
[19]. Volkwein A. Numerische simulation von flexiblen steinschlagschutzsystemen. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich; 2004.
[20]. LS_DYNA®KEYWORD USER'S MANUAL
[21]. 汪敏, 石少卿, 阳友奎. 减压环耗能性能的静力试验及动力有限元分析[J]. 振动与冲击, 2011, 30(4):188-193.
Min W, Shi S Q, Yang Y K. Static tensile test and FEM dynamic simulation for a ring-brake energy disspater[J]. Journal of Vibration & Shock, 2011, 30(4):188-193.
[22]. 齐欣. 柔性被动拦截网结构力学性能研究[D]. 西南交通大学, 2014.
QI Xin.Study the Mechanical Properties of the Passive Flexible Protection System[D]. Southwest Jiaotong University.2014
[23]. Grassl H, Volkwein A, Bartelt P. Experimental and Numerical Modeling of Highly Flexible Rockfall Protection Barriers Modelo experimental y numérico de desprendimiento de rocas alta-mente[J]. 2003.
[24]. Volkwein A. Numerische simulation von flexiblen steinschlagschutzsystemen. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich; 2004.
[25]. Nicot F, Cambou B, Mazzoleni G. From a constitutive modelling of metallic rings to the design of rockfall restraining nets[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2015, 25(1):49-70.
[26]. Grassl H, Volkwein A, Anderheggen E, et al. Steel-net rockfall protection—experimental and numerical simulation[C]//Proceedings of the seventh international conference on structures under shock and impact, Montreal, Canada. 2002.
[27]. Hans Grassl, Axel Volkwein, Perry Bartelt, Experimental and Numerical Modeling of Highly Flexible Rockfall Protection Barriers[J], Diss. Federal Institute of Technology, ETH Zurich(2002)
[28]. Gentilini C, Gottardi G, Govoni L, et al. Design of falling rock protection barriers using numerical models[J]. Engineering Structures, 2013, 50: 96-106.(图2)
[29]. Volkwein A. Numerical modelling of flexible rockfall protection systems[J]. American Society of Civil Engineers, 2013, 11(179):1-11.
[30]. 王爽. 柔性拦截结构环形网片力学性能研究[D]. 西南交通大学, 2015.
Wang Shuang. Study on mechanical properties of flexible intercepting structure[D]. Southwest Jiaotong University.2015

PDF(2524 KB)

Accesses

Citation

Detail

段落导航
相关文章

/