钙质砂侵彻试验与理论研究

苗伟伟1,邱艳宇1,2,程怡豪1,,文祝2,郭磊2,王明洋1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 232-237.

PDF(1542 KB)
PDF(1542 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 232-237.
论文

钙质砂侵彻试验与理论研究

  • 苗伟伟1,邱艳宇1,2,程怡豪1,,文祝2,郭磊2,王明洋1,2
作者信息 +

Experimental and Theoretical Studies on the Penetration of Calcareous Sand

  • MIAO Weiwei1, QIU Yanyu1,2,CHENG Yihao1, WEN Zhu2, GUO Lei2, WANG Mingyang1,2
Author information +
文章历史 +

摘要

采用弹径14.5mm的圆锥形头部弹体开展300—1000 m/s速度范围内钙质砂的侵彻试验,观察弹体磨蚀、介质破碎以及侵彻深度;建立刚性弹体侵彻钙质砂的拟流体侵彻理论模型,并与试验结果进行对比。结果表明:弹体侵彻后在弹头出现了明显的磨蚀划痕,在弹道附近存在由原砂样破碎而形成的白色粉末,弹体在介质中的侵彻深度随撞击速度的增大而增大;模型与试验结果吻合较好,可用来预测撞击速度在300—1000 m/s范围内钙质砂的侵彻深度;文末得到了归一化的侵彻深度计算公式。

Abstract

Here,cone-shaped projectiles with the diameter of 14.5 mm were used to conduct penetration tests of calcareous sand within the impact speed range of 300-1 000 m/s to observe projective abrasion,media crushing and penetration depth.The quasi-fluid penetration theoretical model for rigid projectiles penetrating calcareous sand was built.Its calculation results were compared with test ones.Results showed thatafter projectiles penetrating, their warheads have obvious abrasion scratches; there are white powders formed by crushing the original sand near projectiles’trajectories; penetration depth of projectiles in calcareous sand increases with increase intheir impact speed; the model results agree better with test ones,soit can be used to predict calcareous sand’s penetration depth within the impact speed range of 300-1 000 m/s.Finally, the normalized penetration depth calculation formula was deduced.

关键词

钙质砂 / 侵彻试验 / 理论研究 / 拟流体

Key words

calcareous sand / penetration experiment / theoretical study / quasi-fluid

引用本文

导出引用
苗伟伟1,邱艳宇1,2,程怡豪1,,文祝2,郭磊2,王明洋1,2. 钙质砂侵彻试验与理论研究[J]. 振动与冲击, 2019, 38(17): 232-237
MIAO Weiwei1, QIU Yanyu1,2,CHENG Yihao1, WEN Zhu2, GUO Lei2, . Experimental and Theoretical Studies on the Penetration of Calcareous Sand[J]. Journal of Vibration and Shock, 2019, 38(17): 232-237

参考文献

[1] 秦月, 孟庆山, 汪稔, 等. 钙质砂地基单桩承载特性模型试验研究[J]. 岩土力学, 2015, 36(6): 1714-1720.
Qin Yue, Meng Qingshan, Wang Ren, et al. A study on bearing characteristics of single pile in calcareous sand based on model experiment [J]. Rock and Soil Mechanics, 2015, 36(6): 1714-1720.
[2] 朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836.
Zhu Changqi, Chen Haiyang, Meng Qingshan, et al. Microscopic characterization of intra-pore structures of calcareous sands [J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836.
[3] 张家铭, 蒋国胜, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. DOI: 10.16285/j.rsm.2009.07.056.
Zhang Jiaming, Jiang Guosheng, Wang Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands [J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048.
[4] 吴京平, 楼志刚. 钙质砂的基本特性 [C]//第七届全国土力学及基础工程学术会议论文集.北京:中国建筑工业出版社, 1994:267-271.
[5] Semple R. State of the Art report on Engineering Properties of Carbonate Soils [C]//Proc. Int. Conf. on calcareous sediments. Perth, Australia: [s, n.], 1988: 807-836.
[6] Coop M R. The mechanics of the uncemented carbonate sand [J]. Geotechnique, 1990, 40(4): 607-626.
[7] 吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5):49-55.
Wu Jingping, Chu Yao, Lou Zhigang. Influence of Particle Breakage on Deformation and Strength Properties of Calcareous Sands [J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5):49-55.
[8] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究[J]. 岩土力学, 2012, 33(10): 2953-2959.
Xue Xueyong, Wang Ren, Wang Xinzhi, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 2953-2959.
[9] Bless S J, Berry D T, Pedersen B, et al. Sand Penetration by High Speed Projectiles [C] // Mark L E, Michael D F, William W A. Shock Compression of Condensed Matter - 2009. Melville, NY: American Institute of Physics, 2009: 1361-1364.
[10] Cooper W L, Breaux B A. Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops [J]. International Journal of Fracture, 2010, 162(1): 137-150.
[11] Borg J P, Morrissey M P, Perich C A, et al. In situ velocity and stress characterization of a projectile penetrating a sand target: Experimental measurements and continuum simulations [J]. International Journal of Impact Engineering, 2013, 51: 23-25.
[12] Vooren A V, Borg J, Sandusky H, et al. Sand Penetration: A Near Nose Investigation of a Sand Penetration Event [J]. Procedia Engineering, 2013, 58: 601-607.
[13] Omidvar M, Iskander M, Bless S. Response of granular media to rapid penetration [J]. International Journal of Impact Engineering, 2014, 66(4): 60-82.
[14] Young CW. Penetration equations [R]. SAND-97-2426,1997.
[15] Allen W A, Earle B. Mayfield, Harvey L. Morrison. Dynamics of a Projectile Penetrating Sand [J]. Journal of Apllied Physics, 1957, 28:370-376.
[16] Allen W A, Earle B. Mayfield, Harvey L. Morrison. Dynamics of a Projectile Penetrating Sand. Part II [J]. Journal of Apllied Physics, 1957, 28:1331-1335.
[17] Forrestal M J, Luk V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427-444.
[18] 杨桂通. 土动力学 [M]. 北京:中国建材工业出版社, 2000.
[19] Shi CC, Wang MY, Li J, et al. A model of depth calculation for projectile penetration into dry sand and comparison with experiments [J]. International Journal of Impact Engineering, 2014, 73: 112-122.
[20] Shi CC, Wang MY, Zhang KL, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility [J]. International Journal of Impact Engineering, 2015, 83: 1-10.
[21] GUREVICH M I. The theory of jets in an ideal fluid[M]. London: Pergamon Press Ltd., 1966: 113–116.
[22] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究[J]. 爆炸与冲击, 2018.(已录待刊)
Wen Zhu, Qiu Yanyu, Zi Min, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2018.

PDF(1542 KB)

424

Accesses

0

Citation

Detail

段落导航
相关文章

/