基于Tikhonov正则化迭代求解的结构损伤识别方法

夏志鹏,王树青,徐明强,王皓宇

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 251-259.

PDF(2441 KB)
PDF(2441 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 251-259.
论文

基于Tikhonov正则化迭代求解的结构损伤识别方法

  • 夏志鹏,王树青,徐明强,王皓宇
作者信息 +

Structural damage identification based on TRIM

  • XIA Zhipeng  WANG Shuqing  XU Mingqiang  WANG Haoyu 
Author information +
文章历史 +

摘要

求解以结构物理与模态信息所构成的线性方程组,而获得结构的损伤位置和损伤程度,是进行结构损伤检测的一种常用做法。然而,在噪声影响下,其求解往往会出现振荡发散的情况,导致损伤检测结果不准确。Tikhonov正则化方法广泛应用于噪声条件下的线性系统求解,该方法执行的关键是选择合理的正则化矩阵及正则化参数。文章提出了一种迭代化的Tikhonov正则化方法,通过迭代的方式重构正则化矩阵,在充分抑制噪声的同时,保留了真实的损伤信息。同时,提出了奇异值二分法,自适应地调整正则化参数,避免了传统“L-曲线”方法选取正则化参数时需要进行大量试算等诸多问题。选取一海洋平台结构对提出方法的有效性进行验证,并与传统Tikhonov正则化方法进行对比,结果表明:提出的迭代型Tikhonov正则化方法具有更好的损伤识别结果。

Abstract

Solving a linear equation set constructed with structural physical and modal information to acquire a structure’s damage location and damage level is a common method in structural damage detection.However, under effects of noise, oscillation and divergence phenomena may appear in solving to cause incorrect structural damage detection results.Tikhonov regularization method is widely used to solve linear systems under noise condition, and the key point to correctly apply this method is choosing an appropriate regularization matrix and regularization parameters.Here, a Tikhonov regularization iterative method (TRIM) was proposed to reconstruct regularization matrix through iteration, effectively suppress noise and retain actual damage information.Meanwhile, the singular value dichotomy was proposed to adaptively adjust regularization parameters and avoid mass trial calculation for selecting these parameters using the traditional "L-curve" method.An offshore platform structure was selected to verify the effectiveness of the proposed method, and compare the results using TRIM with those using the traditional Tikhonov regularization method.The results showed that the proposed TRIM has better damage identification results.

关键词

海洋平台 / 损伤检测 / 交叉模态应变能 / Tikhonov正则化 / 噪声鲁棒性

引用本文

导出引用
夏志鹏,王树青,徐明强,王皓宇. 基于Tikhonov正则化迭代求解的结构损伤识别方法[J]. 振动与冲击, 2019, 38(17): 251-259
XIA Zhipeng WANG Shuqing XU Mingqiang WANG Haoyu . Structural damage identification based on TRIM[J]. Journal of Vibration and Shock, 2019, 38(17): 251-259

参考文献

[1] 杨和振. 环境激励下海洋平台结构模态参数识别与损伤诊断研究[D]. 青岛:中国海洋大学, 2004.
Yang Hezhen. Struetural Modal Parameter Identification and Damage Diagnosis of Offshore Platforms under•Ambient Excitation[D]. Qingdao:Ocean University of China,2004
[2] 杨智春,于哲峰. 结构健康监测中的损伤检测技术研究进展[J]. 力学进展, 2004, 34(2): 215-223.
Yang Zhichun, Yu Zhefeng. Progress of damage detection for structural health monitoring[J]. Advances In Mechanics, 2004, 34(2): 215-223.
[3] 王开凤,张谢东. 土木工程结构损伤识别研究[J]. 公路, 2008(1): 154-159.
Wang Kaifeng, Zhang Xiedong. Research on damage identification in civil engineering structure[J]. Highway, 2008(1):154-159.
[4] Fan W, Qiao P. Vibration-based Damage Identification Methods: A Review and Comparative Study[J]. Structural Health Monitoring, 2011, 9(3): 83-111.
[5] 闻骥骏. 工程结构损伤识别的反问题研究[D]. 武汉:武汉理工大学, 2006.
Wen Jijun. Research on inverse problems of engineering structure damage identification[D]. Wuhan: Wuhan University of Technology, 2006.
[6] 王艺霖, 方从启. 考虑不适定性处理的结构损伤识别新方法[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(2): 169-173.
Wang Yilin, Fang Congqi. A new damage detection method with the ill-posedness processing[J]. Journal of Xi'an University Of Architecture And Technology (natural science), 2010, 42(2): 169-173.
[7] Hua X G, Ni Y Q, Chen Z Q, et al. An improved perturbation method for stochastic finite element model updating[J]. International Journal for Numerical Methods in Engineering, 2010, 73(13): 1845-1864.
[8] Li X Y, Law S S. Adaptive Tikhonov regularization for damage detection based on nonlinear model updating[J]. Mechanical Systems & Signal Processing, 2010, 24(6): 1646-1664.
[9] 张  纯, 宋固全. 去噪正则化模型修正方法在桥梁损伤识别中的应用[J]. 振动工程学报, 2012, 25(1): 97-102.
Zhang Chun, Song Guquan. Bridge damage identification by finite element model updating with Tikhonov regularization and wavelet denoising[J]. Journal of Vibration Engineering, 2012, 25(1): 97-102.
[10] 郭荣, 房怀庆, 裘剡, 于钦林, 朱伟伟. 基于Tikhonov正则化及奇异值分解的载荷识别方法[J].振动与冲击, 2014, 33(6):53-58.
Guo R, Fang H Q, Qiu S, et al. Novel load identification method based on the combination of Tikhonov regularization and singular value decomposition[J]. Journal of vibration and shock, 2014, 33(6):53-58
[11] 邱飞力, 张立民, 张卫华. Tikhonov方法在不适定模型修正中的应用[J]. 振动与冲击, 2015, 34(12):121-126.
Qiu F L, Zhang L M, Zhang W H. Parameters updating of simulation models with ill-posed characteristics[J]. Journal of vibration and shock, 2015, 34(12):121-126.
[12] Tikhonov A. Solution of Incorrectly Formulated Problems and the Regularization Method[J]. Soviet Math Dokl, 1963, 5.
[13] 张  海, 王  尧, 常象宇,等. L_(1/2)正则化[J]. 中国科学:信息科学, 2010, 40(3): 412.
[14] 张  纯, 宋固全, 吴光宇. 改进的正则化模型修正方法在结构损伤识别中的应用[J]. 工程力学, 2012, 29(2): 29-33.
Zhang Chun, Song Guquan, Wu Guanyu. Structural damage identification by finite element model updating with improved Tikhonov regularization[J]. Engineering Mechanics, 2012, 29(2): 29-33.
[15] 张  纯, 洪祖江, 宋固全. 基于1范数正则化的模型修正方法在结构损伤识别中的应用[J]. 应用力学学报, 2013(5): 756-761.
Zhang Chun, Hong Zujiang, Song Guquan. Structural damage identification by model updating method with 1-norm-based regularization scheme[J]. Chinese Journal of Applied Mechanics, 2013(5):756-761.
[16] 田福志, 洪祖江, 张纯,等. L1/2范数正则化模型修正方法在结构损伤识别中的应用[J]. 南昌大学学报(理科版), 2016, 40(2):131-136.
Tian Fuzhu, Hong Zujiang, Zhang Chun, et al. The application of model updating with L1/2-in structural damage identification[J]. Journal of Nanchang University(Natural Science), 2016, 40(2):131-136.
[17] 李英超, 王树青, 张敏. 正则化方法在结构模型修正中的应用研究[J]. 中国海洋大学学报自然科学版, 2016, 46(9):107-115.
Li Yingchao, Wang Shuqing, Zhang Min. Study on application of regularization method in structural model updating[J]. Periodical of Ocean University of China, 2016, 46(9):107-115.
[18] Hu S L J, Li H J, Wang S Q. Cross-Modal Strain Energy Method for Estimating Damage Severity[J]. Journal of Engineering Mechanics, 2006, 132(4):429-437.
[19] Li H, Fang H, Hu S L J. Damage localization and severity estimate for three-dimensional frame structures[J]. Journal of Sound & Vibration, 2007, 301(3):481-494.
[20] Wang S Q, Li H J, Hu S L J. Cross modal strain energy method for damage localization and severity estimation[J]. OMAE2007-29381, 2007: 245-249.
[21] Xu, M Q, Wang, S Q. Cross modal strain energy–based structural damage detection in the presence of noise effects[J]. Advances in Mechanical Engineering, 2017, 9(12):1-14.
[22] Guyan R J. Reduction of stiffness and mass matrices[J]. Aiaa Journal, 1965, 3(2):380-380.
[23] Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion[J]. American Mathematical Monthly, 1998, 4(5):491-491.
[24] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. Siam Review, 2006, 34(4):561-580.
[25] Wang, S Q. Damage detection in offshore platform structures from limited modal data[J]. Applied Ocean Research, 2013, 41(41):48-56.

PDF(2441 KB)

Accesses

Citation

Detail

段落导航
相关文章

/