为了研究移动的隧道轴向激励作用下饱和土体的动力响应,建立了隧道-饱和土体的动力分析模型;利用波函数展开法、镜像原理等,推导了频域内隧道轴向激励作用下饱和土体动力响应的解析解,并给出了饱和土体临界速度的经验公式;通过快速傅里叶逆变换得到了时-空域内饱和土体的动力响应。结果表明:轴向激励作用下,饱和土体临界速度只与土体的剪切模量和密度有关,且数值接近土体剪切波速的1.1倍;速度小于临界速度时,各响应数值随着剪切模量以及孔隙率的增大而减小,轴向位移随着隧道埋深的增大有小幅度减小,当隧道埋深超过半径的10倍时,轴向位移趋于稳定;速度大于临界速度时,各响应数值随着剪切模量以及孔隙率的增大而增大;角度对径向位移、轴向位移影响很小,对环向位移的影响较大。
Abstract
In order to study dynamic responses of saturated porous soil under a moving tunnel axial excitation, a dynamic analysis model for a tunnel-saturated soil system was established.The analytical solutions to the system’s dynamic responses in frequency domain were derived with the wave function expansion method, the mirror principle, and Graf addition formula.The empirical formula for the critical velocity of saturated soil was also deduced.The time-space domain solutions to saturated soil’s dynamic responses were obtained with the fast Fourier inverse transform.The results showed that the critical velocity of saturated soil under axial excitation is only related to soil’s shear modulus and density, and its value is close to 1.1 times of soil’s shear wave velocity;when velocity is less than the critical velocity, response values decrease with increase in soil’s shear modulus and porosity, and axial displacement slightly decreases with increase in tunnel buried depth, but when tunnel buried depth is more than 10 times of tunnel radius, axial displacement tends to be stable;when velocity is larger than the critical velocity, response values increase with increase in soil’s shear modulus and porosity; angle affects soil’s radial displacement and axial one slightly, while it affects soil’s circumferential displacement greatly.
关键词
轴向激励 /
饱和土体 /
临界速度 /
波函数展开法
{{custom_keyword}} /
Key words
axial excitation /
saturated soil /
critical velocity /
wave function expansion method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Forrest J A, Hunt H E M. A three-dimensional tunnel model for calculation of train-induced ground vibration[J]. Journal of Sound and Vibration, 2006, 294(4): 678-705.
[2] 张谦,陈文化. 地铁列车出、进站加、减速的轴向激励引起出平面振动[J]. 振动与冲击, 2016, 35(24): 96-101. ZHANG Qian, CHEN Wen-hua. Out-of-plane vibration induced by axial excitation while a metro train arriving at or leaving a station [J]. Journal of vibration and shock, 2016, 35(24): 96-101.
[3] Hung H H, Yang Y B. Analysis of ground vibrations due to underground trains by 2.5D finite/infinite element approach[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3): 327-335.
[4] Hung H H, Chen G H, Yang Y B. Effect of railway roughness on soil vibrations due to moving trains by 2.5D finite/infinite element approach[J]. Engineering Structures, 2013, 57: 254-266.
[5] 谢伟平,孙洪刚. 地铁运行时引起的土的波动分析[J]. 岩石力学与工程学报, 2003, 22(07): 1180-1184.
XIE Wei-ping, SUN Hong-gang. Fem analysis on wave propagation in soils induced by high speed train loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(07): 1180-1184.
[6] Jian-Fei LU, Dong-Sheng Jeng. Dynamic response of a circular tunnel embedded in a saturated poroelastic medium due to a moving load[J]. Journal of Vibration and Acoustics, 2006, 128(6): 750-756.
[7] 黄晓吉,扶名福,徐斌. 移动环形荷载作用下饱和土中圆形衬砌隧洞动力响应研究[J]. 岩土力学, 2012, 33(3): 892-898.
HUANG Xiao-ji, FU Ming-fu, XU Bin. Dynamic response of a circular lining tunnel in saturated soil due to moving ring load[J]. Rock and Soil Mechanics, 2012, 33(3): 892-898.
[8] 曾晨,孙宏磊,蔡袁强等. 简谐荷载作用下饱和土体中圆形衬砌隧道三维动力响应分析[J]. 岩土力学, 2014, 35(04): 1147-1156.
ZENG Chen, SUN Hong-lei, CAI Yuan-qiang et al. Analysis of three-dimensional dynamic response of a circular lining tunnel in saturated soil to harmonic loading [J]. Rock and Soil Mechanics, 2014, 35(04): 1147-1156.
[9] 袁宗浩,蔡袁强,曾晨. 地铁列车荷载作用下轨道系统及饱和土体动力响应分析[J]. 岩石力学与工程学报, 2015, 34(7): 1470-1479.
YUAN Zong-hao, CAI Yuan-qiang, ZENG Cheng. Dynamic response of track system and underground railway tunnel in saturated soil subjected to moving train loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1470-1479.
[10] 袁宗浩,蔡袁强,袁万等. 地铁列车荷载作用下饱和土中圆形衬砌隧道和轨道系统动力响应分析[J]. 岩土力学, 2017, 38(4): 1003-1014.
YUAN Zong-hao, CAI Yuan-qiang, YUAN Wan et al. Dynamic response of circular railway tunnel and track system in saturated soil under moving train loading[J]. Rock and Soil Mechanics, 2017, 38(4): 1003-1014.
[11] Sheng X, Jones C J C, Thompson D J. Ground vibration generated by a harmonic load moving in a circular tunnel in a layered ground[J]. Journal of Low Frequency Noise Vibration & Active Control, 2003, 22(2): 83-96.
[12] 包汉营,陈文化,张谦. 基于薄层法和移动坐标系法的地铁竖向振动在成层土层中传播[J]. 岩土力学: 待刊.
Bao Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of vertical vibration of subway in layered soil based on thin layer method and moving coordinate system method[J] Rock and Soil Mechanics, To be published.
[13] 胡安峰,李怡君,贾玉帅等. 埋置移动荷载作用下成层饱和地基的动力响应[J]. 工程力学, 2016, 33(12): 44-51.
HU An-feng, LI Yi-jun, JIA Yu-shuai et al. Dynamic response of a layered saturated ground subjected to a buried moving load[J] Engineering Mechanics, 2016, 33(12): 44-51.
[14] 巴振宁,金威,梁建文. 移动简谐载荷作用下层状地基-轨道耦合系统动力响应分析[J]. 振动与冲击, 2016, 35(12): 61-70.
BA Zhen-ning, JIN Wei, LIANG Jian-wen. Dynamic responses of layered foundation-track coupled systems due to moving harmonic loads[J]. Journal of vibration and shock, 2016, 35(12): 61-70.
[15] 程潜. 考虑列车纵向作用的高架车站动力分析[D]. 北京:北京交通大学, 2013.
Cheng Qian. Dynamic analysis of elevated station considering vehicle longitudinal effects [D]. Beijing: Beijing Jiao Tong University, 2013
[16] 张楠,夏禾,程潜. 制动力作用下车辆-车站结构耦合系统分析[J]. 振动与冲击, 2011, 30(2): 138-143.
Zhang Nan, Xia He, Cheng Qian. Analysis method for a vehicle structure coupled system under braking force [J]. Journal of Vibration and Shock, 2011, 30(2): 138-143.
[17] 刘志军,夏唐代,黄睿等. Biot 理论与修正的 Biot 理论比较及讨论[J]. 振动与冲击, 2015, 34(4): 148-152.
LIU Zhi-jun, XIA Tang-dai, HUANG Rui et al. Comparison and discussion for Biot theory and modified Biot one[J]. Journal of vibration and shock, 2015, 34(4): 148-152.
[18] İ Coşkun, H Engin, A özmutlu. Dynamic stress and displacement in an elastic half-space with a cylindrical cavity [J]. Shock and Vibration, 2010, 18(6): 827-838.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}