基于整周期时域回归识别滚子间距变化的保持架故障诊断方法

李修文1, 2,唐德尧2,杨荣华1, 2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 45-50.

PDF(1500 KB)
PDF(1500 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 45-50.
论文

基于整周期时域回归识别滚子间距变化的保持架故障诊断方法

  • 李修文1, 2,唐德尧2,杨荣华1, 2
作者信息 +

Cage fault diagnosis method based onroller spacing variation recognition with full-cycletime domain regression

  • LI Xiuwen1,2, TANG Deyao2,  YANG Ronghua1,2
Author information +
文章历史 +

摘要

针对目前轨道交通领域大量出现使用非金属保持架取代金属保持架,使得保持架发生故障后无法产生周期性金属碰撞信息而难以有效识别的问题,提出了基于整周期时域回归识别滚子间距变化的保持架故障诊断方法。通过采集含有滚子通过外环承载区应力信息的振动信号,首先进行跟踪采样频率修正,再按保外周期进行整周期化,同时保留外环频率及各滚子抖动的边频信息进行频域滤波,最后利用极大值得到各滚子间隔信息,从而识别保持架是否出现故障。通过仿真和实际非金属保持架轴承信号应用表明,本方法能够有效提取到反映各滚子间隔是否异常的有用信息,从而实现保持架的故障诊断。

Abstract

Aiming atthe problem of large amount of non-metal cages being used to replace metal ones in rail transitfield to make it unable to produce periodic metal collision information after cages having faults for their recognition, a cage fault diagnosis method based on roller spacing variation recognition with the whole periodic time domain regression was proposed.Firstly, vibration signals containing stress information of roller passing outer ring’s load-bearing zone were collected, and sampling frequency was tracked and corrected.Then these signals were full-cycled according to cage outer cycle.At the same time, outer-ring frequencies and side frequency information of roller jitter werereserved forfiltering in frequency domain.Finally, per roller spacing information was obtained using the maximum value principle to identify if cage fault happening.Simulation and signals of actual rolling bearings with non-metallic cage showed that the proposed method can be used to effectively extract useful information reflectingif per roller spacing is abnormal to realize fault diagnosis of cages.

关键词

时域回归 / 保持架 / 故障诊断

Key words

time domain regression / cage / fault diagnosis

引用本文

导出引用
李修文1, 2,唐德尧2,杨荣华1, 2. 基于整周期时域回归识别滚子间距变化的保持架故障诊断方法[J]. 振动与冲击, 2019, 38(17): 45-50
LI Xiuwen1,2, TANG Deyao2, YANG Ronghua1,2. Cage fault diagnosis method based onroller spacing variation recognition with full-cycletime domain regression[J]. Journal of Vibration and Shock, 2019, 38(17): 45-50

参考文献

[1] 何正嘉,屈梁生. 机械故障诊断学[M]. 上海: 上海科学技术出版社, 1986.
[2] 隋文涛,张丹,Wilson Wang. 基于EMD和MKD的滚动轴承故障诊断方法[J]. 振动与冲击,2015,34(09):55-59+64.
SUI Wei-tao, ZHANG Dan, Wilson Wang. Fault diagnosis of rolling element bearings based on EMD and MKD[J]. Journal of Vibration and Shock, 2015, 34(09): 55-59+64.
[3] 章立军,阳建宏,徐金梧,等. 形态非抽样小波及其在冲击信号特征提取中的应用[J]. 振动与冲击,2007,26(10):56-59.
ZHANG Li-jun, YANG Jian-hong, XU Jin-wu, et al.Morhological undecimated wavelet and its application to feature extraction of impulsive signal[J]. Journal of Vibration and Shock, 2007, 26(10) : 56-59.
[4] 张云强,张培林,王怀光,等. 结合VMD和Volterra预测模型的轴承振动信号特征提取[J].振动与冲击,2018,37(03):129-135+152.
ZHANG Yunqiang, ZHANG Peilin, WANG Huaiguang, et al.Feature extraction method for rolling bearing vibration signals based on VMD and Volterra prediction model[J]. Journal of Vibration and Shock, 2018, 37(03): 129-135+152.
[5] Venkatesan A., Parthasarathy S., Lakshmanan M. Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems. Chaos, Solitons& Fractals, 2003, 18(4):891-898.
[6] 李修文,阳建宏,黎敏,等. 基于频域形态滤波的低速滚动轴承声发射信号降噪新方法[J]. 振动与冲击,2013,32(1):65-68.
LI Xiu-wen, YANG Jian-hong, LI Min, et al. A new de-noising method for acoustic emission signal of rolling bearings with low speed based on morphological filtering in frequency domain[J]. Journal of Vibration and Shock, 2013, 32(1): 65-68.
[7] 夏均忠,刘远宏,马宗坡,等. 基于调制随机共振的微弱信号检测研究[J].振动与冲击,2012,31(03):132-135+140.
Xia Junzhong, Liu Yuan, Hongma Zongpo, et al. Weak signal detection based on the modulated stochastic resonance [J]. Journal of Vibration and Shock, 2012, 31(03): 132-135+140.
[8] Li X W, Yang J H, Li M, et al. A Time-Frequency Filtering Method Based on Generalized S Transform and its Application in Machinery Fault Diagnosis[J]. Applied Mechanics and Materials, 2012(157-158): 531-537.
[9] 潘海洋,郑近德,童宝宏,等. 基于稀疏带宽模态分解的变转速滚动轴承故障诊断[J]. 振动与冲击,2017,36(14):92-97.
PAN Haiyang, ZHENG Jinde, TONG Baohong, et al.Fault diagnosis approach for roller bearing based on the sparse bandwidth mode decomposition under variable speed conditions[J]. Journal of Vibration and Shock, 2017, 36(14): 92-97.
[10] Lijun Zhang, Jinwu, Xu, Jianhong Yang. Multiscale morphology analysis and its application to fault diagnosis, Mechanical Systems and Signal Processing, 2008, 22(3): 597-610.
[11] LEI Yaguo, LIN Jing, HE Zhengjia, et al. A review on ensemble empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(7): 108−126.
[12] 靳行,林建辉,伍川辉,等. 基于EEMD-TEO熵的高速列车轴承故障诊断方法[J]. 西南交通大学学报,2018,53(02):359-366.
JIN Hang, LIN Jianhui, WU Chuanhui, et al. Diagnostic Method for High-Speed Train Bearing Fault Based on EEMD-TEO Entropy[J]. Journal of Southwest Jiaotong Uinversity, 2018, 53(02):359-366.
[13] 黄锦殿,柴卫东. 基于小波分析的氢涡轮泵低温轴承保持架故障特征辨识[J]. 火箭推进,2011,02:43-47.
HUANG Jin-dian, CHAI Wei-dong. Fault identification based on wavelet analysis for bearing cage of hydrogen turbopump[J]. Journal of Rocket Propulsion, 2011, 02: 43-47.
[14] 唐德尧,李辉,宋辛晖,等. 识别轴承保持架故障的共振解调外孤谱诊断技术[J]. 中国设备工程,2009,10:34-36.
TANG Deyao, LI Hui, Song xin hui, et al. Diagnosis Technique with Resonance Demodulation Outer Arc Spectrum for Identifying Bearing Holder Fault[J]. CHINA PLANT ENGINEERING, 2009, 10: 34-36.
[15] 黄运生,邓四二,张文虎,等. 冲击载荷对铁路轴箱轴承塑料保持架动态性能影响研究[J]. 振动与冲击,2018,37(01):172-180.
HUANG Ynusheng, DENG Sier, ZHANG Wenhu, et al. Influence of impact loads on the dynamic characteristics of plastic cages in railway axle bearing[J]. Journal of Vibration and Shock, 2018, 37(01) : 172-180.
[16] 胡劲松,吴昭同,严拱标. 提高旋转机械振动信号整周期采样精度的一种方法[J]. 浙江大学学报(工学版),2002,36(03):43:55.
HU Jing-song, WU Zhao-tong, YAN Gong-biao. A method to enhance the precision of vibration signals complete period sampling in rotating machinery[J]. Journal of Zhejiang University(Engineering Science), 2002, 36(03): 43:55.

PDF(1500 KB)

Accesses

Citation

Detail

段落导航
相关文章

/