冲击荷载作用下橡胶混凝土的损伤研究

郝贠洪1,2,樊磊1,韩燕1,李慧1,田旭乐1,郝庆丽1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 73-80.

PDF(3748 KB)
PDF(3748 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 73-80.
论文

冲击荷载作用下橡胶混凝土的损伤研究

  • 郝贠洪1,2,樊磊1,韩燕1,李慧1,田旭乐1,郝庆丽1,2
作者信息 +

Damage of rubber concrete under impact loads

  • HAO Yunhong1,2,FAN Lei1, HAN Yan1, LI Hui1, TIAN Xule1, HAO Qingli1,2
Author information +
文章历史 +

摘要

针对冲击荷载作用下橡胶混凝土的损伤问题,利用自动冲击球压仪对橡胶混凝土的动态冲击损伤行为进行研究,并应用激光共聚焦扫描显微镜(LSCM)和扫描电子显微镜(SEM)分析了其冲击损伤形貌及机理特征。结果表明:冲击荷载下橡胶混凝土抗冲击能力优于基准混凝土,且随橡胶粒径的减小抗冲击能力增强;随着冲击荷载的不断增加,橡胶混凝土的压痕增长速率小于基准混凝土,极限荷载值却大于基准混凝土,而橡胶粒径的减小,使压痕增长速率呈减小趋势,极限荷载值增大,表面抗塑性变形能力及试样表面动态力学性能增强;冲击荷载下材料表面形成球冠状小坑,压痕边缘出现不同程度的材料堆积,80目的橡胶在混凝土中分布更加均匀,且损伤区较为连续无明显微裂纹。研究结果为冲击荷载作用下对橡胶混凝土材料损伤研究提供依据。

Abstract

Aiming at damage problems of rubber concrete under impact loads, an automatic impact ball pressure instrument was used to study dynamic impact damage behavior of rubber concrete.Morphology and mechanism features of impact damage were analyzed with a laser scanning confocal microscopy (LSCM) and a scanning electron microscope (SEM).Results showed that impact resistance ability of rubber concrete under impact loads is stronger than that of normal concrete, and its impact resistance ability is enhanced with decrease in rubber particle diameter; with continuous increase in impact loads, indentation growth rate of rubber concrete is smaller than that of normal concrete, while its ultimate load value is larger than that of normal concrete; with decrease in rubber particle diameter, its indentation growth rate tends to decrease, while its ultimate load value increases, and its anti-plastic deformation ability and its specimen surface’s dynamic performance are enhanced; under impact loads, coronal pits are formed on its surface, different degrees of material accumulation appear at indentation edges, 80-mesh rubber is distributed more uniformly in concrete, and damage zones are more continuous and there are no obvious micro-cracks; the results provide a basis for studying damage of rubber concrete  under impact loads.

关键词

冲击荷载 / 损伤机理 / 冲击球压 / 橡胶混凝土 / 压痕形貌

Key words

 impact load / damage mechanism / sphere impact / rubberized concrete / indentation morphology

引用本文

导出引用
郝贠洪1,2,樊磊1,韩燕1,李慧1,田旭乐1,郝庆丽1,2. 冲击荷载作用下橡胶混凝土的损伤研究[J]. 振动与冲击, 2019, 38(17): 73-80
HAO Yunhong1,2,FAN Lei1, HAN Yan1, LI Hui1, TIAN Xule1, HAO Qingli1,2. Damage of rubber concrete under impact loads[J]. Journal of Vibration and Shock, 2019, 38(17): 73-80

参考文献

[1] 戴洪雁,陈福林,岑兰,等.废旧橡胶再生的今天与明天[J].世界橡胶工业,2012,39(5):48-53
DAI Hong-yan, CHEN Fu-lin, CEN lan, et al. Waste rubber recycling today and tomorrow [J]. World Rubber Industry, 2012,39 (5): 48-5(in Chinese)
[2] 邓宗才,刘希成. 路用橡胶混凝土的研究现状分析与展望[J]. 国防交通工程与技术,2010,8(06):1-5.
DENG Zong-cai, LIU Xi-cheng. Research status and prospect of rubber concrete for roads [J]. National Defense Traffic Engineering and Technology, 2010,8 (06): 1-5. (in Chinese)
[3] Malek K.  Batayneh, Iqbal Marie, Ibrahim Asi. Promoting the use of crumb rubber concrete in developing countries [J]. Waste Management,2008,28(11):2171-2176
[4] Rafat Siddique,Tarun R.Naik. Properties of concrete containing scrap-tire rubber-an overview[J].waste Management,2004,24(6):653-569
[5] 亢景付,任海波,张平祖. 橡胶混凝土的抗裂性能和弯曲变形性能[J]. 复合材料学报, 2006, 23(6): 158-162.
    KANG Jing-fu,REN Hai-bo,ZHANG Ping-zu. Cra-cking-resistance and flexural propertyof rubberized concrete[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 158-162(in Chinese).
[6] Topcu I.B,Avcular N. Collision behaviors of rubberized congcrete [J].Journal of Materials Science,1994,29(16):4191-4199
[7] 赵志远, 毕乾, 王立燕,等. 废橡胶颗粒改性水泥基材料的塑性开裂和抗冲击性能[J]. 混凝土与水泥制品, 2008(4):1-5.
Zhao Zhi-yuan, Bi Gan, Wang Li-yan, et al. Plastic cracking and impact resistance of waste rubber particles modified cement-based materials[J]. China Concrete and Cement Products, 2008(4):1-5. (in Chinese)
[8] 郭永昌,刘锋,陈贵炫,等.橡胶混凝土的冲击压缩试验研究[J].建筑材料学报,2012,15(01):139-144.
Guo Yong-chang,Liu Feng,Chen Gui-xuan, etal.Experimental study on impact compressionof rubber concrete[J].Journal of Building Materials,2012,15(01):139-144.(in Chinese)
[9] 兰成. 橡胶改性再生骨料混凝土路面材料抗冲击性能研究[D].广东工业大学,2014.
Lan Cheng. Study on impact resistance of rubber modified recycled aggregate concrete
pavement materials[D]. Guangdong Universityof Technology, 2014. (in Chinese)
 [10] 陈剑, 王全才, 王浩,等. 基于Hertz理论的泥石流块石冲击力修正系数研究[J]. 振动与冲击, 2017, 36(16):26-31.
CHEN Jian, WANG Quan-cai, WANG Hao, et al. A study on the modified coefficient for impact force of boulders conveyed in debris flow based on the Hertz theory [J]. Journal of Vibration and Shock, 2017, 36(16):26-31. (in Chinese)
[11] JR A F, ROBERTS S G. Surface mechanicalanalyses by Hertzian indentation [J]. Ceramica,  2004 , 50 (314) :94-108.
[12] GREEN I. Poisson ratio effects and critical values in spherical and cylindrical hertzian contacts [J]. International Journal of Applied Mechanics & Engineering, 2005, 10(3):451-462.
[13] 章超,徐松林,王鹏飞,等.不同冲击速度下泡沫铝变形和应力的不均匀性[J].爆炸与冲击,2015, 35(4):567-575.
ZHANG Chao, XU Song-lin, WANG Peng-fei, et al.Heavy deformation and stress nonuniformity of aluminum foams under different impact velocities [J]. Explosion and Shock, 2015, 35 (4): 567-575. (in Chinese)
[14]包亦望. 陶瓷及玻璃力学性能评价的一些非常规技术[J].硅酸盐学报, 2007, 35(S1):117-124.
BAO Yi-xuan. Some unconventional techniques for evaluating the mechanical properties of ceramics and glass [J]. Chinese Journal ofSilicomium, 2007, 35 (S1): 117-124. (in Chinese)
[15] 朱兆祥,胡时胜,陆菁,等.冲击载荷下钢-铅层合体的弹粘塑性应力应变关系研究[J].爆炸与冲击,1989,9(1):1-10.
ZHU Zhao-xiang, HU Shi-sheng, Lu Jing, et al.Studies on the relationship between the elastic-plastic stress-strain of steel-lead layered composites under impact load [J] .BREAKING AND IMPACT, 1989,9 (1): 1-10. (in Chinese)
[16] 杨刚, 刘让奇, 肖钊. 碳纤维复合材料冲击响应的数值模型确认[J]. 振动与冲击, 2017, 36(11):255-262.
YANG Gang, LIU Rang-qi, XIAO Zhao. Numerical model validation method for impact responses of carbon fiber composite materials [J] Journal of Vibration and Shock, 2017, 36(11): 255-262. (in Chinese)
[17] Johnson, K. L. 接触力学[M]. 高等教育出版, 1992.
Johnson, K. L. Contact Mechanics [M]. Higher Education Press, 1992. (in Chinese)
[18] Bhowmick S,Cha H,Jung Y G,et al.Fatigur and debris generation at indentation—induced cracks in silicon[J],ACTA Materialia, 2009 , 57 (2) :582-589
[19] Tabor D. The hardness of metals[J]. Measurement Techniques, 2000, 5(4):281.
[20] Hutchings I M. Energy absorbed by elastic waves during plastic impact [J], Journal of Physics D: Applied of Physics, 1979 , 12 (11) :1819
[21] Kuninaka H, Hayakawa H. The simulation of the inelastic impact[J]. 2003, 708(1):156-157.[22] Fu J, Adams M J, Reynolds G K, et al. Impact deformation and rebound of wet granules[J],Power Technology, 2004 , 140 (3) :248-257
[23] Momber A W. Damage to rocks and cementitious materials from solid impact[J]. Rock Mechanics and Rock Engineering, 2004, 37(1):57-82.
[24] Setoodeh A R, Malekzadeh P, Nikbin K. Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM[J]. Materials & Design, 2009, 30(9):3795-3801.
 [25]岳汉威. 岩石、混凝土材料的接触损伤及冲击球压法评价研究[D].中国建筑材料科学研究总院,2010.
YUE Han-wei. Study on contact damage of rock and concrete materials and impact ballistic method [D]. China Building Materials Academy, 2010. (in Chinese)

PDF(3748 KB)

Accesses

Citation

Detail

段落导航
相关文章

/