内凹三角形负泊松比材料的面内冲击动力学性能

马芳武,梁鸿宇,赵颖,陈实现,蒲永锋

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 81-87.

PDF(3309 KB)
PDF(3309 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 81-87.
论文

内凹三角形负泊松比材料的面内冲击动力学性能

  • 马芳武,梁鸿宇,赵颖,陈实现,蒲永锋
作者信息 +

In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio

  • MA Fangwu, LIANG Hongyu, ZHAO Ying, CHEN Shixian, PU Yongfeng
Author information +
文章历史 +

摘要

本文提出了一种内凹三角形负泊松比材料,在保证元胞其他几何参数不变的前提下,通过改变三角形侧边内凹角度,建立了不同内凹形式的内凹三角形负泊松比材料模型。通过显式动力有限元软件LS-DYNA具体分析了内凹形式与冲击速度对内凹三角形负泊松比材料面内冲击变形和能量吸收能力的影响。研究结果表明:冲击载荷作用下,在冲击端,相对于三边内凹的情况,单边内凹的平台应力更大;在固定端,侧边内凹程度越小,输出应力滞后时间越长。相比于内凹六边形负泊松比材料,内凹三角形负泊松比材料吸能更平稳,压缩量也更大,并随着冲击速度的提高,内凹三角形负泊松比材料表现出更强的能量吸收能力。

Abstract

A concave triangle material with negative Poisson’s ratio was proposed.Under the premise of other geometric parameters of cellular being unchanged, models of this material with different concave forms were established through changing side concave angle of triangle.Using the explicit dynamic finite element software LS-DYNA, effects of concave form and impact velocity on in-plane impact deformation and energy absorption ability of this material were analyzed.Results showed that under in-plane impact loads, plateau stress at impacted end with single side being concave is larger than that with all sides being concave; at fixed end, the smaller the side’s concave degree, the longer the output stress delay time; compared to concave hexagon material with negative Poisson’s ratio, this material absorbs energy more smoothly and its compression amount is larger; with increase in impact velocity, this material reveals a stronger energy absorption ability.

关键词

内凹三角形 / 负泊松比效应 / 平台应力 / 面内冲击 / 能量吸收

Key words

concave triangle / negative Poisson’s ratio configuration / plateau stress / in-plane impact / energy absorption

引用本文

导出引用
马芳武,梁鸿宇,赵颖,陈实现,蒲永锋. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17): 81-87
MA Fangwu, LIANG Hongyu, ZHAO Ying, CHEN Shixian, PU Yongfeng. In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2019, 38(17): 81-87

参考文献

[1] Gibson L J, Ashby M F. Cellular solids : structure and properties [M]. Cambridge : Cambridge University Press, 1997.
[2] Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio [J]. Computational Materials Science, 2012, 58:140-153.
[3] Lakes R. Deformation mechanisms in negative Poisson's ratio materials: structural aspects [J]. Journal of Materials Science, 1991, 26(9):2287-2292.
[4] Wan H, Ohtaki H, Kotosaka S, et al. A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model [J]. European Journal of Mechanics - A/Solids, 2004, 23(1):95-106.
[5] Li D, Ma J, Dong L, et al. Stiff square structure with a negative Poisson's ratio [J]. Materials Letters, 2017, 188:149-151.
[6] Choi J B, Lakes R S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio[J]. International Journal of Mechanical Sciences, 1995, 37(1):51-59.
[7] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13):103-109.
DENG Xiaolin,LIU Wangyu. In-plane impact dynamic analysis for a sinusoidal curved honeycombstructure with negative poisson’s ratio[J]. Journal of Vibration and Shock,2017, 36(13):103-109.
[8] 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23):223-231.
HAN Huilong,ZHANG Xinchun.In- plane dynamic impact response characteristics of periodic 4- pointstar- shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23):223-231.
[9] 卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21):16-22.
LU Zixing,LI Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock,2017, 36(21):16-22.
[10] Fu M, Liu F, Hu L. A novel category of 3D chiral material with negative Poisson's ratio[J]. Composites Science & Technology, 2018, 160:111-118.
[11] Li D, Yin J, Dong L, et al. Strong re-entrant cellular structures with negative Poisson’s ratio[J]. Journal of Materials Science, 2018, 53(5):3493-3499.
[12] Carta G, Brun M, Baldi A. Design of a porous material with isotropic negative Poisson’s ratio [J]. Mechanics of Materials, 2016, 97:67-75.
[13] Liu Z, Hao W, Qin Q. Buckling and energy absorption of novel pre-folded tubes under axial impacts[J]. Applied Physics A, 2017, 123(5):351.
[14] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5):475-482.
Zhang Xinchun,Liu Ying,Li Na.In-plane impact dynamic crushing of honeycombs with negative Poisson’s ratio effects [J]. Explosion and Shock Waves, 2012, 32(5):475-482.
[15] Zhou G, Ma Z D, Li G, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Structural & Multidisciplinary Optimization, 2016, 54(3):1-12.
[16] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182.
[17] Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping [J]. International Journal of Mechanical Sciences, 2002, 44(8):1665-1696.
[18] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part II—‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics & Physics of Solids, 2005, 53(10):2206-2230.
[19] Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum [J]. Acta Materialia, 2004, 52(14):4229-4237.
[20] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5-6):531-570.
[21] Lu G, Yu T. - Energy Absorption of Structures and Materials[J]. Energy Absorption of Structures & Materials, 2003:385–400.

PDF(3309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/