运输类飞机风挡鸟撞位置影响分析研究

刘信超1,徐亚芳2,王露晨1,陆晓华1,左洪福1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 95-102.

PDF(3977 KB)
PDF(3977 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (17) : 95-102.
论文

运输类飞机风挡鸟撞位置影响分析研究

  • 刘信超1,徐亚芳2,王露晨1,陆晓华1,左洪福1
作者信息 +

Effects of bird strike position and boundary clamping component  on transport airplane windshield safety

  • LIU Xinchao1, XU Yafang2, WANG Luchen1, LU Xiaohua1, ZUO Hongfu1
Author information +
文章历史 +

摘要

根据CCAR 25.775要求,研究运输类飞机风挡的鸟撞安全性以确保运输类飞机风挡结构满足适航要求。基于瞬态动力学软件PAM-CRASH建立碰撞数值仿真模型,对撞击位置的影响进行参数化研究。通过研究接触力、动能变化的分布规律,证明越靠近机身纵轴,接触力越大,飞机吸收的鸟体动能越多。通过将风挡变形过程与鸟体动能变化相联系,发现部分工况的撞击结果对边界表现出较强的相关性,风挡边界夹持部件对风挡变形能力的影响不可忽视,并考虑了窗框结构不同部位支持刚度的差异性。同时,通过分析窗框结构不同部位的内能分布,指出了窗框结构在不同鸟撞位置影响下的响应特点。最终发现,对于风挡结构而言,撞击点相对飞机纵轴的距离、边界夹持部件两大因素属于较为敏感的因素,并依据这两因素给出了具有代表意义的四个撞击靶点,研究结果对适航审定工作有一定的参考意义。

Abstract

Here, according to the requirements of CCAR 25.775, transport airplane windshield safety under bird strike was studied to make these planes’ windshield structures satisfy airworthiness requirements.The numerical simulation model of bird striking windshield was established based on the transient dynamics software PAM-CRASH, and the parametric study on effects of bird strike positions was performed with this simulation model.Through studying distribution laws of contact force and kinetic energy variation, it was shown that the closer to aircraft longitudinal axis the bird strike position, the larger the contact force, the more the bird kinetic energy absorbed by aircraft; windshield deforming process is closely involved in bird kinetic energy variation, results of some strike cases have a bigger relevance to windshield boundary, effects of windshield boundary clamping component on windshield deforming ability can’t be ignored.Then, the stiffness difference among different parts of windshield frame structure was considered, and inner energy distribution of different parts of windshield frame structure was analyzed to get response features of windshield frame structure under actions of different bird strike positions.Finally, the results showed that the distance between bird strike position and aircraft longitudinal axis, and windshield boundary clamping component are two more sensitive factors to windshield safety; according to the 2 factors, 4 significant bird strike target points are chosen; the results provide a reference for airworthiness certification of transport aircraft windshield structures.

关键词

鸟撞 / 适航 / 运输类飞机风挡 / 撞击位置

Key words

bird strike / airworthiness / transport airplane windshield / impact position

引用本文

导出引用
刘信超1,徐亚芳2,王露晨1,陆晓华1,左洪福1. 运输类飞机风挡鸟撞位置影响分析研究[J]. 振动与冲击, 2019, 38(17): 95-102
LIU Xinchao1, XU Yafang2, WANG Luchen1, LU Xiaohua1, ZUO Hongfu1. Effects of bird strike position and boundary clamping component  on transport airplane windshield safety[J]. Journal of Vibration and Shock, 2019, 38(17): 95-102

参考文献

[1] 李玉龙, 石霄鹏. 民用飞机鸟撞研究现状[J]. 航空学报, 2012, 33(2):189-198.
[2] Doubrava R, Strnad V. Bird strike analyses on the parts of aircraft structure. Proceedings of the twenty seventh congress aeronautical science. 2010.
[3] Kangas P, Pigman G.L. Development of aircraft windshields to resist impact with birds in flight. Part II Investigation of windshield materials and methods of windshield mounting. 1948. SAE Technical Paper No. 458001, USA.
[4] Dar U A, Zhang W, Xu Y. FE Analysis of Dynamic Response of Aircraft Windshield against Bird Impact[J]. International Journal of Aerospace Engineering, 2013, 2013(4).
[5] Wang J, Xu Y, Zhang W. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model[J]. Composite Structures, 2014, 108(1):21-30.
[6] Mohagheghian I, Charalambides M N, Wang Y, et al. Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates[J]. International Journal of Impact Engineering, 2018.
[7] Grimaldi A, Sollo A, Guida M, et al. Parametric study of a SPH high velocity impact analysis – A birdstrike windshield application[J]. Composite Structures, 2013, 96(4):616-630.
[8] Maziar, Gholami, Korzani, et al. Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder[J]. Water Science and Engineering, 2017, 10(2):143-153.
[9] G. R. Liu, M. B. Liu, Shaofan Li. “Smoothed particle hydrodynamics — a meshfree method”[J]. Computational Mechanics, 2004, 33(6):491-491.
[10] Monaghan, J. J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2):399-406.
[11] Bui H H, Fukagawa R. An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(1):31-50.
[12] Wang Z B, Chen R, Wang H, et al. An overview of smoothed particle hydrodynamics for simulating multiphase flow[J]. Applied Mathematical Modelling, 2016, 40(23-24): 9625 -9655.
[13] Becker M, Teschner M. Weakly compressible SPH for free surface flows[C]// ACM Siggraph/eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, Usa, August. DBLP, 2007:209-217.
[14] Amccarthy M, Rxiao J, Tmccarthy C, et al. Modelling bird impacts on an aircraft wing Part 2: Modelling the impact with an SPH bird model[J]. International Journal of Crashworthiness, 2005, 10(1):51-59.
[15] Xue P, Zhao N, Liu J, et al. Approach to Assess Bird Strike Resistance for a Wing Slat Structure[J]. Journal of Aircraft, 2015, 48(3):1095-1098.
[16] Wilbeck J S. Impact behavior of low strength projectiles[J]. 1978.
[17] Zhang D, Fei Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science & Technology, 2016, 54:320-329.
[18] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies, Aerosp. Sci. Technol. 32(1) (2014) 260–266.
[19] Pothnis J R, Perla Y, Arya H, et al. High Strain Rate Tensile Behavior of Aluminum Alloy 7075 T651 and IS 2062 Mild Steel[J]. Journal of Engineering Materials & Technology, 2011, 133(2):21-26.
[20] 谢灿军, 童明波, 刘富,等. 民用飞机平尾前缘鸟撞数值分析及试验验证[J]. 振动与冲击, 2015, 34(14):172-178.
Xie Canjun, Tong Mingbo, Liu Fu, et al. Numerical analysis and experimental verification of bird impact on civil aircraft's horizontal tail wing leading edge [J]. Journal of vibration and shock, 2015, 34(14):172-178.
[21] 刘富, 张嘉振, 童明波,等. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析[J]. 振动与冲击, 2014, 33(4):113-118.
Liu Fu, Zhang jiazhe, Tong Mingbo, et al. Dynamic tests and bird impact dynamic response analysis for a 2024-T3 aluminum alloy plate[J]. Journal of vibration and shock, 2014, 33(4):113-118.
[22] 谢灿军, 童明波, 刘富,等. 7075-T6铝合金动态力学试验及本构模型研究[J]. 振动与冲击, 2014(18):110-114.
Xie Canjun, Tong Mingbo, Liu Fu, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of vibration and shock, 2014(18):110-114.
[23] Tan J Q, Zhan M, Liu S, et al. A modified Johnson–Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Materials Science & Engineering A, 2015, 631(1):214-219.
[24] Long A, Wan M, Wang W, et al. Forming methodology and mechanism of a novel sheet metal forming technology - electromagnetic superposed forming (EMSF)[J]. International Journal of Solids & Structures, 2017.
[25] 王振, 张超, 王银茂,等. 飞机风挡无机玻璃在不同应变率下的力学行为[J]. 爆炸与冲击, 2018, 38(2):295-301.
Wang Zhen, Zhang Chao, Wang Yinmao, et al. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion and Shock Waves, 2018, 38(2):295-301.
[26] 赵国华, 马婧, 田纯祥. 影响化学钢化玻璃强度的因素[J]. 玻璃, 2009, 36(4):31-34.
Zhao Guohua, Ma Jing, Tian Chunxiang. Influence Factors of Chemical Strengthening Glass Strength[J]. Glass, 2009, 36(4):31-34.
[27] 张龙辉, 张晓晴, 姚小虎,等. 高应变率下航空透明聚氨酯的动态本构模型[J]. 爆炸与冲击, 2015, 35(1):51-56.
Zhang Longhui, Zhang Xiaoqing, Yao Xiaohu, et al. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion and Shock Waves, 2015, 35(1):51-56.
[28] Shao Xiao. Review on Studies on Mechanical Properties of SGP[J]. 2015, 04(3):143-150.

PDF(3977 KB)

442

Accesses

0

Citation

Detail

段落导航
相关文章

/