高坝泄流诱发闸门伴生振动的双调谐TMD减振方法研究

梁超1,3,练继建2,张金良1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 1-8.

PDF(1934 KB)
PDF(1934 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 1-8.
论文

高坝泄流诱发闸门伴生振动的双调谐TMD减振方法研究

  • 梁超1,3 ,练继建2 ,张金良1
作者信息 +

Double TMD vibration damping method for reducing the hydraulic gate accompanying vibration induced by high dam flood discharge

  • LIANG Chao1,2,LIAN Jijian3,ZHANG Jinliang1
Author information +
文章历史 +

摘要

高坝泄流诱发的闸门振动是工程水力学领域的经典问题。近期原型观测中发现的闸门伴生振动具有能量集中、频率稳定的特点,为被动式减振措施的应用提供了条件。由于流固耦合机制的复杂性,在有效衰减优势频率振动的同时应保持宽频带内的抑振效果,避免削弱伴生振动的同时产生其它机制的强烈振动。因此,考虑闸门伴生振动机制,采用双调谐TMD减振措施,建立了振动控制方程;基于H∞鲁棒控制设计目标,推导了闸门-双调谐TMD体系参数优化设计的目标函数和约束条件;并对动力特性与实际相似的简化模型进行了参数优化设计;将优化设计的双调谐TMD安装于实际闸门结构进行动力分析,结果表明该方法可以有效衰减闸门的伴生振动,保障闸门安全和正常运行。

Abstract

The gate vibration induced by high dam flood discharge is a classical problem in the field of engineering hydraulics.Recently, it is reported the gate accompanying vibration that is characterized by concentrated energy and stable dominant frequency has been observed in prototype tests.It is noted that the aforementioned characteristics of gate accompanying vibrations are significantly beneficial for the application of passive dynamic vibration absorber (DVA).As the fluid-solid interaction mechanism is extremely complex, not only the vibration with dominant frequency but also the vibration in a relatively wide frequency band should be attenuated to avoid the generation of strong vibrations induced by other mechanisms while reducing the accompanying vibration.Therefore, considering the special mechanism of gate accompanying vibration, the double tuned mass damper (TMD) was applied and the vibration equation was established.According to the H∞ robust control design target, the objective function and constraint conditions for the gate-double TMD system were deduced.Moreover, the parameter optimization design was conducted based on a simplified model with similar dynamic characteristics as the actual model.The dynamic responses of the actual gate model with and without the double TMD were analyzed and the results show that the proposed approach can effectively reduce the gate accompanying vibration and ensure the safety and normal operation of the hydraulic gate.

关键词

高坝泄流;闸门伴生振动;减振方法;H&infin / 性能目标;双调谐TMD;参数优化设计

Key words

high dam flood discharge / accompanying vibration of gate / vibration reduction method / H&infin / performance objective / double TMD / parameter optimization design

引用本文

导出引用
梁超1,3,练继建2,张金良1. 高坝泄流诱发闸门伴生振动的双调谐TMD减振方法研究[J]. 振动与冲击, 2019, 38(18): 1-8
LIANG Chao1,2,LIAN Jijian3,ZHANG Jinliang1. Double TMD vibration damping method for reducing the hydraulic gate accompanying vibration induced by high dam flood discharge[J]. Journal of Vibration and Shock, 2019, 38(18): 1-8

参考文献

[1] 谢省宗. 闸门振动的流体弹性理论[J]. 水利学报. 1962, (4): 35-49.
XIE Xing-zong. Fluid elasticity theory of gate vibration[J]. Journal of Hydraulic Engineering. 1962, (4): 35-49.
[2] Murphy TE. Model and prototype observations of gate oscillations. 10th congress of the Int. Ass. of Hydraulic Research, London, 1963, Paper: 3.1.
[3] Schmidgall T. Spillway Gate Vibration on Arkansas River Dams[J]. Journal of the Hydraulics Division, 1972, 98(1): 219-238.
[4] Hardwick JD. Flow-induced vibration of vertical-lift gate[J]. ASCE Journal of Hydraulics Division, 1974, 100: 631–644.
[5] Naudascher E, Locher A. Flow-induced forces on protruding walls[J]. Journal of the Hydraulic Division, 1974, paper 10347.
[6] Kolkman PA. Flow-induced Gate Vibrations[D]. Ph.D. Thesis. Technische Hogeschool Delft, 1976.
[7] 肖天铎. 隧洞进口平板门边缘漏水激振的研究-Naudascher模型[J]. 中国科学A辑, 1986, 2, 214-224.
XIAO Tian-duo. Study on the vibration induced by the water leakage at the edge of a flat gate of a tunnel inlet -- Naudascher model[J]. Science in China (Series A), 1986, 2, 214-224.
[8] Thang ND, Naudascher E. Vortex-excited vibrations of underflow gates. Journal of Hydraulic Research, 1986, 24(2): 133–151.
[9] 练继建, 彭新民, 崔广涛, 等. 水工闸门振动稳定性研究[J]. 天津大学学报, 1999, 32(2): 171-176.
LIAN Ji-jian, PENG Xin-min, CUI Guang-tao, et al. On the stability of gate vibrations[J]. Journal of Tianjin University (Science and Technology), 1999, 32(2): 171-176.
[10] 章继光, 刘恭忍. 轻型弧形钢闸门事故分析研究[J]. 水力发电学报, 1992, (3): 49-57.
ZHANG Ji-guang, LIU Gong-ren. Study on accident analysis of light arc steel gate[J]. Journal of Hydroelectric Engineering, 1992, (3): 49-57.
[11] 阎诗武. 水工弧形闸门的动特性及其优化方法[J]. 水利学报, 1990, (6): 11-19.
YAN Shi-wu. Dynamic characteristics of tainter gates used in hydraulic structures and their optimization[J]. Journal of Hydraulic Engineering, 1990, (6): 11-19.
[12] 王国玉, 曹树良. 通气对空化引起振动的影响[J]. 水力发电学报, 2001, (2): 55-62.
WANG Guo-yu, CAO Shu-liang. Ventilation effects on cavitation induced-vibration[J]. Journal of Hydroelectric Engineering, 2001, (2): 55-62.
[13] 严根华. 水工闸门自激振动实例及其防治措施[J]. 振动、测试与诊断, 2013, 33(S2): 203-208.
YAN Gen-hua. Self-induced vibration case and controlling measure of hydraulic gate[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(S2): 203-208.
[14] 王正中, 张雪才, 刘计良. 大型水工钢闸门的研究进展及发展趋势[J]. 水力发电学报, 2017, 36(10): 1-18.
WANG Zheng-zhong, ZHANG Xue-cai, LIU Ji-liang. Advances and developing trends in research of large hydraulic steel gates[J]. Journal of Hydroelectric Engineering, 2017, 36(10): 1-18.
[15] 梁超. 高坝泄流诱发结构和场地振动机理和减振方法研究[D]. 天津: 天津大学, 2018.
LIANG Chao. Research on vibration mechanism and reduction method for structures and surrounding ground under excitations generated by high dam flood discharge[D]. Tianjin: Tianjin University, 2018.
[16] 欧进萍. 结构振动控制——主动、半主动和智能控制[M]. 北京: 科学出版社, 2018.
OU Jin-ping. Structural vibration control -- active, semi-active and intelligent control[M]. Beijing: Science Press, 2018.
[17] 杨世浩. 水工弧形闸门流激振动的MR智能半主动控制仿真研究[D]. 武汉: 武汉理工大学, 2005.
YANG Shi-hao. Simulated research on MR intelligent semi-active control of flow-induced vibration of hydraulic arch sluice[D]. Wuhan: Wuhan University Of Technology, 2005.
[18] 瞿伟廉, 刘晶, 王锦文, 等. 水工弧形闸门振动的智能半主动控制[J]. 武汉理工大学学报, 2006, 28(10): 55-65.
QU Wei-lian, LIU Jing, WANG Jin-wen, et al. Semi-active intelligent control for response of radial gate in hydraulic structure[J]. Journal of Wuhan University of Technology, 2006, 28(10): 55-65.
[19] 刘博静. 急流脉动压力相似律及其特性研究[D]. 天津: 天津大学, 2013.
LIU Bo-jing. Study on the similarity law and characteristics of fluctuating pressures in supercritical flow[D]. Tianjin: Tianjin University, 2013.
[20] 沈春颖, 何士华, 杨婷婷, 等. 平面直升闸门流固耦合振动同步测试模型试验研究[J]. 振动与冲击, 2016, 35(19): 219-224.
SHEN Chun-ying, HE Shi-hua, YANG Ting-ting, et al. Model tests for synchronous measurement of fluid-structure interaction vibration of a plane vertical lift gate[J]. Journal of Vibration and Shock[J]. 2016, 35(19): 219-224.
[21] 骆少泽, 张陆陈, 樊宝康. 超大型弧门流激振动试验研究[J]. 工程力学, 2009(a02): 241-244.
LUO Shao-ze, ZHANG Lu-chen, FAN Bao-kang. Experimental study of flow-induced vibration for super size radial gate[J]. Engineering Mechanics, 2009(a02): 241-244.
[22] 韩昌海, 杨宇, 骆少泽. 青草沙水库下游水闸水力特性试验分析研究[J]. 水利水电技术, 2011, 42(2): 25-28.
HAN Chang-hai, YANG Yu, LUO Shao-ze. Experimental analysis and study on hydraulic characteristics of downstream sluice of Qingcaosha reservoir[J]. Water Resources and Hydropower Engineering, 2011, 42(2): 25-28.
[23] 文永奎, 卢文良. 分布式TMD对斜拉桥抖振减振的参数优化及分析[J]. 土木工程学报, 2014, 47(6): 88-96.
WEN Yong-kui, LU Wen-liang. Parametric optimization and analysis of distributed TMD for buffeting response control of cable-stayed bridges[J]. China Civil Engineering Journal, 2014, 47(6): 88-96.
[24] 柳国环, 练继建, 国巍, 等. 地震多点输入模型中影响矩阵R的意义与注记[J]. 振动、测试与诊断, 2014, 34(6): 1008-1013.
LIU Guo-huan, LIAN Ji-jian, GUO Wei, et al. Mathematical and physical meaning of influence matrix R in calculation model for multiple-input structural analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6): 1008-1013.
[25] 李火坤, 邓冰梅, 魏博文, 等. 基于有限测点的高拱坝原型整体动位移场反演研究[J]. 振动与冲击, 2016, 35(10): 1-8.
LI Huo-kun, DENG Bing-mei, WEI Bo-wen, et al. Inversion of the whole dynamic displacement field of a prototype high arch dam based on limited points measurement[J]. Journal of Vibration and Shock, 2016, 35(10): 1-8.
[26] 俞立. 鲁棒控制——线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002.
YU Li. Robust control -- method of linear matrix inequalities[M]. Beijing: Tsinghua University Press, 2002.
[27] 周克敏, J.C. Doyle, K. Glover. 鲁棒与最优控制[M]. 北京: 国防工业出版社. 2002.
ZHOU Ke-min, J.C. Doyle, K. Glover. Robust and Optimal Control[M]. Beijing: National Defend Industry Press. 2002.

PDF(1934 KB)

536

Accesses

0

Citation

Detail

段落导航
相关文章

/