随机结构主动控制系统的鲁棒控制研究

王磊1,2,谭平1,赵时运3,陈刚2,周福霖1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 103-108.

PDF(1059 KB)
PDF(1059 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 103-108.
论文

随机结构主动控制系统的鲁棒控制研究

  • 王磊1,2,谭平1,赵时运3,陈刚2,周福霖1
作者信息 +

Robust active control of stochastic structures

  • WANG Lei1,2,TAN Ping1,ZHAO Shiyun3,CHEN Gang2,ZHOU Fulin1
Author information +
文章历史 +

摘要

针对随机结构的鲁棒控制问题,本文基于随机结构正交展开理论和线性矩阵不等式(linear matrix inequality,LMI),提出了随机结构的鲁棒H_∞控制系统设计方法。该方法以随机结构的正交展开扩阶模型为基础,结合有界实引理和线性矩阵不等式,建立鲁棒控制系统,并使得控制系统传递函数对不确定性扰动满足H_∞干扰抑制。文末以某典型随机结构模型为例,结合概率密度演化方法,分析比较了两类常用鲁棒H_∞控制系统设计方法与本文所述方法的差异,验证了本文所述方法的有效性和鲁棒性。

Abstract

A robust H∞control algorithm for stochastic structures was presented based on the orthogonal expansion theory of stochastic structures and linear matrix inequality(LMI).A stochastic structure was first converted into a deterministic equivalent model through the orthogonal expansion method.Then, the robust controller of the deterministic equivalent model was proposed by virtue of the linear matrix inequalities based on the bounded real lemma.The differences between the H∞ control algorithms based on the deterministic model, bounded uncertain model and stochastic model were investigated through a numerical example by a probability density evolution analysis.The numerical results demonstrate that the proposed control algorithm is effective and robust.

关键词

主动控制 / 随机结构 / 鲁棒控制 / 线性矩阵不等式 / 概率密度演化方法

Key words

 active control / stochastic structure / robust control / linear matrix inequality(LMI) / probability density evolution method(PDEM)

引用本文

导出引用
王磊1,2,谭平1,赵时运3,陈刚2,周福霖1. 随机结构主动控制系统的鲁棒控制研究[J]. 振动与冲击, 2019, 38(18): 103-108
WANG Lei1,2,TAN Ping1,ZHAO Shiyun3,CHEN Gang2,ZHOU Fulin1. Robust active control of stochastic structures[J]. Journal of Vibration and Shock, 2019, 38(18): 103-108

参考文献

[1]  Yao J T P.Concept of structural control[J]. Journal of the Structural Division,1972,98(7): 1567–1574.
[2]  宁响亮,刘红军,谭平,周福霖.基于LMI的结构振动多目标鲁棒H_2/H_∞控制[J].振动工程学报,2010,23(2):167-172.
Ning Xiangliang, Liu Hongjun, Tan Ping, Zhou Fulin.Multi-objective robust H_2/H_∞ control for structural vibration based on LMI[J].Journal of Vibration Engineering,2010,23(2):167-172.
[3]  周克敏,Doyle J C,Glover K.鲁棒与最优控制[M].北京:国防工业出版社,2006.
[4]  宋刚,吴志刚,林家浩.考虑参数不确定性的结构抗震鲁棒H_∞控制[J].地震工程与工程振动,2008,28(6):226-232.
Song Gang,Wu Zhigang,Lin Jiahao.Robust H_∞ control for earthquake-excited structures with parameter uncertainties[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008,28(6):226-232.
[5]  张远勤,林桐,穆静等.基于线性不等式(LMI)的建筑结构抗震H_∞控制[J].地震工程与工程振动,2003,23(5):169-173.
Zhang Yuanqin, Lin Tong. H_∞ control for seismic-excited buildings based on linear matrix inequalities(LMI)[J]. Journal of Earthquake Engineering and Engineering Vibration, 2003,23(5):169-173.
[6] Shu-Xiang Guo, Ying Li. Non-probalistic reliability method and reliability-based optimal LQR design for vibration control of structures with uncertain-but-bounded parameters[J]. Acta Mechanical Sinica, 2013,29(6):864-874.
[7]  李文章,吴凌尧,郭雷.基于LMI的结构振动鲁棒H_∞控制[J].振动工程学报,2008,21(2):157-161.
Li Wenzhang, Wu Lingyao, Guo Lei. Robust H_∞ control of structural vibration based on LMI[J]. Journal of Vibration Engineering, 2008,21(2),157-161.
[8]  Costa E F, Oliveira V. On the design of guaranteed cost controllers for a class of uncertain linear systems[J]. Systems and Control Letters, 2002, 46:17-29.
[9]  Ho W H, Chen S H, Liu T K, et al. Design of robust-optimal output feedback controllers for linear uncertain systems using LMI-based approach and genetic algorithm[J]. Information Sciences, 2010, 180:4529-4542.
[10] 王光远.论不确定性结构力学的发展[J].力学进展,2002,32(2):205~211.
Wang Guanyuan. On the development of uncertain structural mechanics[J].Advances in Mechanics, 2002, 32(2):205~211.
[11]  Mengali G, Pieracci A. Probabilistic approach for integrated structural control design[J]. AIAA Journal, 2000,38(9):1767-1769.
[12]  Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008,30:65-77.
[13]  魏星,李杰.随机场理论在随机结构分析中的应用[J].华北水利水电学院学报,1996,17(3):85~89、96.
Wei Xing, Li Jie.Application of random field theory in stochastic structures analysis[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 1996,17(3):85~89、96.
[14]  李杰.随机机构系统—分析与建模[M].北京:科学出版社,1996.
[15] Wu C L, Ma X P, Fang T. A complementary note Gegenbauer polynomial approximation for random response problem of stochastic structure [J]. Probabilistic Engineering Mechanics, 2006, 21:410-419.
[16]  俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
[17]  陈建兵.随机结构非线性反应概率密度演化分析[M].上海:同济大学出版社,2007.
[18]  陈建兵,李杰.随机结构静力反应概率密度演化方程的差分方法[J].力学季刊,2004,25(1):22~28.
Chen Jianbing, Li Jie. Difference method for probability density evolution equation of stochastic structural response[J].Chinese Quarterly of Mechanics, 2004,25(1):22~28.
[19]  Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. New York:John Wiley & Sons,1997.
 

PDF(1059 KB)

Accesses

Citation

Detail

段落导航
相关文章

/