不确定性激励下碰摩转子的振动响应识别

王 威,甘春标

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 122-127.

PDF(1873 KB)
PDF(1873 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 122-127.
论文

不确定性激励下碰摩转子的振动响应识别

  • 王 威,甘春标
作者信息 +

Identification of the vibration responses of a rub-impact rotor under uncertain excitations

  • WANG Wei,GAN Chunbiao
Author information +
文章历史 +

摘要

应用伪周期替代数据算法分析受不确定性激励的碰摩故障转子振动响应,对故障信号进行识别和分类。在考虑非线性油膜力及碰摩力作用的基础上,建立有界噪声激励作用下碰摩故障转子系统动力学模型,对系统振动响应信号及其相应替代数据进行对比分析与识别,应用关联维数作为检验假设的判别统计量,并结合Poincaré截面图、最大Lyapunov指数及分岔图进行验证。结果表明,替代数据算法能够有效识别此类受随机不确定激励转子系统的周期占优与混沌占优响应信号,可进一步应用于受不确定性激励转子系统的信号识别与故障诊断研究。

Abstract

A pseudo-periodic surrogate algorithm was introduced to analyze the vibration responses of a rub-impact rotor system under uncertain excitations, and the faulty signals were identified and classified.The dynamic model of the rub-impact rotor under the bounded noise excitation was established, where the nonlinear oil-film force and the rub-impact force were also taken into account.Then, the surrogate data of the responses of the system were generated via the pseudo-periodic surrogate algorithm, and the correlation dimensions of the original responses were compared with those of their corresponding artificial data.Meanwhile, the Poincaré cross-section portrait, the leading Lyapunov exponent and the bifurcation diagrams were employed to validate the predictions.The results show that, the pseudo-periodic surrogate algorithm can effectively identify the periodic-dominant and chaotic-dominant response signals, and can be further applied to the signal identification and fault diagnosis of rotor systems under uncertain excitations.

关键词

Jeffcott转子 / 不确定性激励 / 碰摩 / 替代数据法 / 信号识别

Key words

Jeffcott rotor / uncertain excitation / rub-impact / surrogate-data method / signal identification

引用本文

导出引用
王 威,甘春标. 不确定性激励下碰摩转子的振动响应识别[J]. 振动与冲击, 2019, 38(18): 122-127
WANG Wei,GAN Chunbiao. Identification of the vibration responses of a rub-impact rotor under uncertain excitations[J]. Journal of Vibration and Shock, 2019, 38(18): 122-127

参考文献

[1] 雷华, 甘春标, 谢潮涌. 一类随机非光滑振动系统相空间中不同吸引域边界的随机分形[J]. 工程力学, 2010,27(3): 1-5.
LEI Hua, GAN Chun-biao, XIE Chao-yong. Random fractal boundaries of different attracting domains in the phase space of a stochastic non-smooth oscillatory system [J]. Engineering Mechanics, 2010, 27(3): 1-5.
[2] 宋友, 柳重堪, 李其汉. 基于小波变换的转子动静件碰摩故障诊断研究[J]. 振动工程学报, 2002, 15(3): 319-322.
SONG You, LIU Zhong-kan, LI Qi-han. Research on rub- impact fault between rotor and stator using wavelet transform [J].  Journal of Vibration Engineering, 2002, 15(3): 319-322.
[3] 刘尚坤, 唐贵基, 王晓龙. 基于改进变分模态分解的旋转机械故障时频分析方法[J]. 振动工程学报, 2016, 29(6): 1119-1126.
 LIU Shang-kun, TANG Gui-ji, WANG Xiao-long. Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition[J]. Journal of Vibration Engineering, 2016, 29(6): 1119- 1126.
[4] 刘树勇, 朱石坚, 杨庆超, 等. Poincaré截面法在混沌振动识别中的应用研究[J]. 应用物理, 2011, 1(3): 108-115.
LIU Shu-yong, ZHU Shi-jian, YANG Qing-, et al. Study on the application of Poincaré section algorithm to chaotic vibration identification [J]. Applied Physics, 2011, 1(3): 108-115.
[5] Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics letters A, 1994, 185(1): 77-87.
[6] Vibe K, Vesin J M. On chaos detection methods[J]. International Journal of Bifurcation and Chaos, 1996, 6(3): 529-543.
[7] Theiler J, Eubank S, Longtin A, et al. Testing for non- linearity in time series: the method of surrogate data[J]. Physica D: Nonlinear Phenomena, 1992, 58(1): 77-94.
[8] Parlitz U, Kocarev L. Using surrogate data analysis for unmasking chaotic communication systems[J]. International Journal of Bifurcation and Chaos, 1997, 7(2): 407-413.
[9] 刘耀宗,温熙森. 非最小相位线性非高斯序列的替代数据检验[J]. 物理学报,2001, 50(4): 633-637.
LIU Yao-zong, WEN Xi-sen, HU Niao-qing. Surrogate data test for the linear non-Gaussian time series with non-minimum phase[J]. Acta Phys. Sin., 2001, 50(4): 633-637.
[10] 卢宇, 贺国光. 基于改进型替代数据法的实测交通流的混沌判别[J]. 系统工程,2005, 23(6): 21-24.        
LU Yu, HE Guo-guang. The identification of chaos in the real traffic flow based on the improved surrogate-data technique [J]. Systems Engineering, 2005, 23(6): 21-24.
[11] Dou C, Wei X, Lin J. Fault diagnosis of gearboxes using nonlinearity and determinism by generalized Hurst exponents of shuffle and surrogate data[J]. Entropy, 2018, 20(5): 364-1-13.
[12] Small M, Tse C K. Applying the method of surrogate data to cyclic time series[J]. Physica D: Nonlinear Phenomena, 2002, 164(3): 187-201.
[13] Zhang J, Luo X, Nakamura T, et al. Detecting temporal and spatial correlations in pseudoperiodic time series[J]. Physical Review E, 2007, 75(1): 016218-1-10.
[14] Gan C. Pseudo-periodic surrogate test to sample time series in stochastic softening Duffing oscillator[J]. Physics Letters A, 2006, 357(3): 204-208.
[15] Gan C, He S. Surrogate test for noise-contaminated dynamics in the Duffing oscillator[J]. Chaos, Solitons & Fractals, 2008, 38(5): 1517-1522.
[16] Zhang S, Qu Y H, Han Q K. Surrogate data method for chaotic characteristic analysis of non-stationary fault signals in rotor system[J]. Applied Mechanics and Materials, 2010, 40: 310-316.
[17] Adams M L, Loparo K A. Chaos concepts as diagnostic tools for assessing rotating machinery vibration signatures[C]//Chaotic, fractal, and nonlinear signal processing. AIP Publishing, 1996, 375(1): 431-434.
[18] 罗跃纲, 王培昌, 闻邦椿. 双跨转子-轴承系统裂纹-碰摩故障的非线性响应研究[J]. 工程力学, 2006, 23(5): 147-151.
LUO Yue-gang, WANG Pei-chang, WEN Bang-chun. Study on nonlinear response of two-span rotor-bearing system with coupling faults of crack and rub-impact [J]. Engineering Mechanics, 2006, 23(5): 147-151.
[19] 王南飞, 蒋东翔, 韩特, 等. 双转子系统动静碰摩动力学研究与基于振动加速度的实验验证[J]. 振动与冲击, 2017, 36(14): 71-76. 
 WANG Nan-fei, JIANG Dong-xiang, HAN Te, et al. Dynamics of rub-impact of dual-rotor systems and the experimental verification based on vibration accelerations measurement[J]. Journal of Vibration and Shock, 2017, 36(14): 71-76.
[20] Chu FL. and Zhang ZS. Bifurcation and chaos in a rub- impact Jeffcott rotor system [J]. Journal of Sound and Vibration, 1998, 210(1):1-18.
[21] Gan C B, Wang Y H, Yang S X, et al. Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset[J]. International Journal of Mechanical Sciences, 2014, 78(1):126-134.
[22] Leng X, Meng G, Zhang T, et al. Bifurcation and chaos response of a cracked rotor with random disturbance[J]. Journal of Sound and  Vibration, 2007, 299(3):621-632.
[23] 高喆, 秦卫阳, 梁晓鹏, 等. 碰摩转子-轴承系统的随机分岔与混沌特性分析[J]. 振动与冲击, 2013, 32(20): 161-164.
Gao Zhe, Qin Wei-yang, Liang Xiao-peng, et al. Stochastic bifurcation and chaos analysis of a rub-impact rotor-bearing system[J]. Journal of Vibration and Shock, 2013, 32(20):161-164.
[24] 游震洲, 黄其祥, 王锋, 等. 转子-基础系统的随机不确定建模与振动分析[J]. 航空动力学报, 2016, 31(1): 1-9.
 YOU Zhen-zhou, HUANG Qi-xiang, WANG Feng, et al. Random uncertainty modeling and vibration analysis of rotor-foundation system[J]. Journal of Aerospace Power, 2016, 31(1): 1-9.
[25] Kantz H, Schreiber T. Nonlinear time series analysis [M]. Cambridge: Cambridge university press, 2004.
[26] Adiletta G, Guido A R, Rossi C. Chaotic motions of a rigid rotor in short journal bearings[J]. Nonlinear Dynamics, 1996, 10(3): 251-269.
[27] Shinozuka M, Jan C-M. Digital simulation of random processes and its applications[J]. Journal of sound and vibration. 1972, 25(1):111-128.
[28] Judd K. An improved estimator of dimension and some comments on providing confidence intervals[J]. Physica D: Nonlinear Phenomena, 1992, 56(2): 216-228.
[29] Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1): 117-134.

PDF(1873 KB)

Accesses

Citation

Detail

段落导航
相关文章

/