分段光滑碰撞振动系统吸引域结构变化机理研究

张惠1,丁旺才1,李险峰2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 141-147.

PDF(1451 KB)
PDF(1451 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 141-147.
论文

分段光滑碰撞振动系统吸引域结构变化机理研究

  • 张惠1,丁旺才1,李险峰2
作者信息 +

Structure change mechanism of the attractor basin in a piecewise-smooth vibro-impact system

  • ZHANG Hui1,DING Wangcai1,LI Xianfeng2
Author information +
文章历史 +

摘要

在研究振动问题或利用振动时效技术消除工件应力时,常需要借助激振器或振动台等激振装置使物体产生振动。针对含间隙及预紧弹簧激振系统,建立了动力学模型,得到其解的解析表达式,利用胞映射法在不同Poincaré截面上获得系统中共存的吸引子及吸引域,分析了由鞍结分岔、周期倍化分叉及边界碰撞分岔诱导出现的吸引子共存情况,及由边界激变、吸引域边界质变及内部激变等全局分岔所引起的吸引子湮灭情况。研究表明由擦边分岔所诱导产生的平常型鞍点分支,及由周期倍化分岔所诱导产生的的翻转型鞍点分支的出现是造成系统出现分形吸引域边界的原因。

Abstract

When the stresses of workpieces are eliminated by vibratory stress relief, it is often necessary to make objects vibrate by means of exciters or vibrators.The global dynamics of a kind of vibro-impact system with clearance and preloaded spring was devoted.The coexistence of attractors induced by saddle-node bifurcation, period-doubling bifurcation and boundary-collision bifurcation was focused.The attractor annihilation caused by boundary crisis, basin-boundary metamorphoses, and interior crises was also considered.The cell-to-cell mappings in different Poincaré sections were employed to study the co-existence of attractors and their basins of attraction.The results show that the boundaries of basins of attraction are becoming fractal along with the appearance of  the regular saddle points induced by grazing bifurcation and the flipped saddle points induced by period-doubling bifurcation.

关键词

非光滑系统 / 全局分析 / 分形吸引域边界 / 胞映射

Key words

Non-smooth dynamical systems / Global analysis;Fractal basin boundary / Cell-to-cell mapping;

引用本文

导出引用
张惠1,丁旺才1,李险峰2. 分段光滑碰撞振动系统吸引域结构变化机理研究[J]. 振动与冲击, 2019, 38(18): 141-147
ZHANG Hui1,DING Wangcai1,LI Xianfeng2. Structure change mechanism of the attractor basin in a piecewise-smooth vibro-impact system[J]. Journal of Vibration and Shock, 2019, 38(18): 141-147

参考文献

[1] 张晶, 蔡任远. 齿轮齿条式转向器啮合间隙控制及补偿机构介绍[J]. 装备制造技术, 2015(5):135-137.
Zhang Jing,Cai Ren-yuan. Introduction Control Methods for Engage Clearance of Gearbox and Compensation Mechanism[J]. Equipment manufacturing technology, 2015(5):135-137.
[2] 翟艳鹏. 飞行器敏感仪器的主被动混合隔振器性能分析及优化[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Zhai Yan Peng, Analysis and optimization on active and passive intergrated vibration isolation of sensitive equipment of the air vehicle[D], Harbin: Harbin Institute of Technology,2013.
[3] 陈涛. 惯性压电激振系统的研究[D]. 天津:天津大学, 2010.
Chen Tao, Research on Inertial Piezoelectric Vibration Exciting System[D].Tianjin: Tianjin University,
[4] 孟建军, 张扬, 祁文哲等. 超磁致伸缩激振器的优化设计及应用分析[J]. 兵器材料科学与工程, 2017(2):8-12.
Meng Jianjun,Zhang Yang,Qi Wenzhe,Wang anmin.Optimal design and application analysis of giant magnetostrictive vibrator[J]. Ordnance Material Science and Engineering, 2017(2):8-12.
[5] Di Bernardo M., Budd C.J., Champneys A.R., Kowalczyk P.  Piecewise-Smooth Dynamical Systems: Theory and Applications. 2008, London: Springer.
[6]   Kong C, Gao X, Liu X. On the Global Analysis of a
Piecewise Linear System that is excited by a Gaussian White Noise[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(5):051029..
[7] 刘梦军, 沈允文, 董海军. 随机外激励下齿轮非线性系统的全局分析[J]. 中国机械工程, 2004, 15(13):1182-1185.
Liu Mengjun,Shen Yunwen, Dong haijun. Global Analysis for the Nonlinear Gear System with Stochastic External Excitation[J]. China mechanical engineering, 2004, 15(13): 1182-1185.
[8] 高文辉, 郭旭, 江俊. 基于胞参考点映射法对转子/定子碰摩响应的全局分析[J]. 动力学与控制学报, 2011, 09(4):363-367.
Gao Wenhui,Guo Xu,Jiang Jun. Study on the Global Response Characteristics of a Rotor/stator Contact System Through Point Mapping under Cell Reference Method[J],Journal of Dynamics and Control, 2011, 09(4):
363-367.
[9] Gluckheimer J, Holmes P, Lee K K. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[J]. Physics Today, 1993, 38(11):102-105.
[10] Wiggins S. Global bifurcations and chaos: analytical methods[J]. 1988, 31(4):690-692.
[11] Parker T S, Chua L O. Practical numerical algorithms for chaotic systems[M]. Springer Verlag, 1989.
[12] Komuro M, Tokunaga R, Matsumoto T, et al. Global Bifurcation Analysis of the Double Scroll Circuit[J]. International Journal of Bifurcation & Chaos, 1991, 1(01):139-182.
[13] Jiang J. Determination of the global responses characteristics of a piecewise smooth dynamical system with contact[J]. Nonlinear Dynamics, 2009, 57(3):351-361.
[14] Zhang S, Ji D, Wen G, et al. Analysis of global subharmonic orbits of a vibro-impact quasi-Hamiltonian system with the Melnikov's method[J]. Dynamics of Continuous Discrete & Impulsive Systems, 2015, 22(1):69-84.
[15] Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer,1987.
[16] Hsu C S. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mechanics, 1980, 47(4):931-939.
[17] Hsu C S. A Generalized Theory of Cell-to-Cell Mapping for Nonlinear Dynamical Systems[J]. Asme Transactions, 1981, 48(3):634.
[18] Hsu C S. Global Analysis of Dynamical Systems Using Posets and Digraphs[J]. International Journal of Bifurcation & Chaos, 1995, 5(04):1085-1118.
[19] Hsu C S.Global Analysis of Dynamical systems using Poets and Digraphs.Int J Bifurcation and Chaos, 1995,5(4): 1085-1118.
[20] Hong L, Xu J. Crises and chaotic transients studied by the generalized cell mapping digraph method[J]. Physics Letters A, 1999, 262(4–5):361-375.
[21] Hong L, Jianxue X U. Discontinuous Bifurcations of Chaotic Attractors in Forced Oscillators by Generalized Cell Mapping Digraph (gcmd) Method[J]. International Journal of Bifurcation & Chaos, 2001, 11(03):723-736.
[22] 洪灵, 徐健学. 一类新的边界激变现象:混沌的边界激变[J]. 物理学报, 2001, 50(4):612-618.
Hong Ling, Xu Jian-xue.A new type of boundary crises: chaotic boundary crises[J].Acta Physica Sinica, 2001, 50(4):612-618.
[23] 冯进钤, 徐伟. 碰撞振动系统中周期轨擦边诱导的混沌激变[J]. 力学学报, 2013, 45(1):30-36.
Feng Jinqian,Xu Wei. Grazing-induced Chaostic Crisis for Periodic Orbits in Vibro-impact Systems[J].Chinese Journal of Theoretical and Applied Mechanics,, 2013, 45(1):30-36.
[24] Grebogi C, Ott E, Yorke J A. Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics[J]. Science, 1987, 238(4827):632-638.
[25] Grebogi C, Ott E, Yorke J A. Basin boundary metamorphoses: Changes in accessible boundary orbits[J]. Nuclear Physics B (Proceedings Supplements), 1987, 2(1):281-300.
[26] Grebogi C, Ott E, Yorke J A. Crises, sudden changes in chaotic attractors, and transient chaos[J]. Physica D Nonlinear Phenomena, 1983, 7(1):181-200.
[27] Nusse H E, Yorke J A. Bifurcations of basins of attraction from the view point of prime ends[J]. Topology & Its Applications, 2007, 154(13):2567-2579.
[28] 洪灵, 徐健学. Wada分形吸引域边界上的混沌鞍[J]. 力学学报, 2002, 34(1):136-141.
Hong Ling, Xu Jianxue. A Chaotic Saddle in a Wada Fractal Basin Boundary[J].Acta Mechanica Sinica, 2002, 34(1):
136-141.
[29] 张永祥. 混杂系统的稳定域及边界结构研究[D]. 沈阳:东北大学, 2015.
Zhang Yong-Xiang, Basins of Attraction and Boundaries in Hybrid Systems[D], Shenyang: Northeastern University, 2015.
[30] 韩清振,何仁.一类非线性相对转动系统的动力学行为及其机理分析[J].振动与冲击,2018,37(04):49-54.
Han Qingzhen,He Ren. Dynamic behaviors and mechanisms analysis of a nonlinear relative rotation system[J].Journal of Vibration and Shock,2018,37(04):
49-54.
[31] Hu H Y . Primary Resonance of a Harmonically Forced Oscillator with a Pair of Symmetric Set-up Elastic Stops[J]. Journal of Sound and Vibration, 1997, 207(3):393-401.
[32] 乐源, 缪鹏程. 一类碰撞振动系统的激变和拟周期-拟周期阵发性[J]. 振动与冲击, 2017(7):1-7
Yue Yuan,Miao Pengcheng.Crisis and quasiperiod-quasiperiod intermittency in a vibro-impact system. 2017(7):1-7
[33] Hassene Gritli, Safya Belghith, Nahla Khraief. Cyclic-fold Bifurcation and Boundary Crisis in Dynamic Walking of Biped Robots[J]. International Journal of Bifurcation & Chaos, 2012, 22(10):418-6.
[34] 赵建学, 俞翔, 柴凯,杨庆超. 准零刚度隔振系统吸引子迁移控制研究[J]. 振动与冲击, 2018, 37(22):225-229.
Zhao Jianxue,Yu Xiang,Chai Kai,Yang Qingchao.Attractor migration control of a vibration isolation system with quasi zero stiffness.Journal of Vibration and Shock,2018, 37(22):225-229.
[35] Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. Springer, 1995.

PDF(1451 KB)

Accesses

Citation

Detail

段落导航
相关文章

/