基于BQGA-ELM网络在滚动轴承故障诊断中的应用研究

皮骏1,马圣2,杜旭博2,贺嘉诚2,刘光才1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 192-200.

PDF(1841 KB)
PDF(1841 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 192-200.
论文

基于BQGA-ELM网络在滚动轴承故障诊断中的应用研究

  • 皮骏1,马圣2,杜旭博2,贺嘉诚2,刘光才1
作者信息 +

Application of BQGA-ELM network in the fault diagnosis of rolling bearings

  • PI Jun1,MA Sheng2,DU Xubo2,HE Jiacheng2,LIU Guangcai1
Author information +
文章历史 +

摘要

提出一种基于Bloch球面量子遗传算法(BQGA)优化极限学习机(ELM)网络的诊断方法(BQGA-ELM),并将BQGA-ELM运用于滚动轴承故障诊断中。首先,基于UCI标准数据集,通过仿真实验比较Bloch量子遗传算法与其它算法优化ELM的性能,仿真实验表明BQGA的优化效果强于其它优化算法。其次,从实验室采集滚动轴承正常、内环故障、外环故障和滚珠故障四种工况的振动信号,并利用时域分析法提取振动信号的相关特征参量。最后,将提取的特征参量经过数据预处理,再输入到诊断模型中进行滚动轴承故障诊断。结果表明:BQGA-ELM能够准确有效的对滚动轴承故障进行诊断,且其误差收敛与故障诊断时间均优于文中其它诊断模型。

Abstract

A novel fault diagnosis model for rolling bearings, by the name of BQGA-ELM, was proposed based on the optimized extreme learning machine (ELM) combined with the Bloch spherical quantum genetic algorithm(BQGA).Comparing with other optimization algorithms including the genetic algorithm (GA), particle swarm optimization (PSO) and quantum genetic algorithm (QGA) by numerical simulations using the standard example data in the UCI machine learning repository: data sets, it is shown that the optimization method based on BQGA is superior to other optimization methods.The vibration signals of a rolling bearing in the following 4 cases, namely, normal, running, inner ring failure,outer ring fault and ball fault were collected in the lab, and the related characteristic parameters of the experimental data sets were extracted by time-domain analysis and then input into the diagnostic models.The diagnostic results show that the BQGA-ELM is a more reliable and suitable method than other methods for the defect diagnosis of rolling bearings, and its error convergency and fault diagnosis time are better than other diagnosis models in the paper.

关键词

Bloch量子遗传算法 / 极限学习机 / 故障诊断 / 滚动轴承

Key words

Bloch-quantum genetic algorithm / extreme learning machine / fault diagnosis / rolling bearing.

引用本文

导出引用
皮骏1,马圣2,杜旭博2,贺嘉诚2,刘光才1. 基于BQGA-ELM网络在滚动轴承故障诊断中的应用研究[J]. 振动与冲击, 2019, 38(18): 192-200
PI Jun1,MA Sheng2,DU Xubo2,HE Jiacheng2,LIU Guangcai1. Application of BQGA-ELM network in the fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2019, 38(18): 192-200

参考文献

[1] 陶洁,刘义伦,杨大炼,宾光富.基于细菌觅食决策和深度置信网络的滚动轴承故障诊断[J].振动与冲击,2017,36(23):68-74.
 TAO J,LIU Y L,YANG D L,et al.Rolling bearing fault diagnosis based on bacterial algorithm and deep belief network [J]. Journal of vibration and shock, 2017,36(23):68-74.(in Chinese)
[2] 皮骏,黄江博.基于IPSO-Elman神经网络的航空发动机故障诊断[J].航空动力学报,2017,32(12):3031-3038.
 PI J,HUANG J B.Aero-engine fault diagnosis based on IPSO-Elman neural network[J].Journal of Aerospace Power, 2017, 32 (12): 3031-3038.(in Chinese)
[3] Desavale R G, Kanai R A, Chavan S P, et al. Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model[J]. Journal of Tribology, 2016, 138(1)
[4] 廖明夫,马振国,刘永泉,王德友.航空发动机中介轴承的故障特征与诊断方法[J].航空动力学报,2013, 28(12):2752-2758.
 LIAO M F,MA Z G,LIU Y Q,et al.Fault Characteristics ang diagnosis method of intershaft bearing in aero-engine [J]. Journal of Aerospace Power, 2013, 28(12):2752- 2758.(in Chinese)
[5] 赵德尊,李建勇,程卫东,温伟刚.基于迭代广义解调算法的变转速滚动轴承复合故障特征的提取[J].振动与冲击,2018,37(04):177-183+190.
 ZHAO D Z,LI J Y,CHENG W D,et al.Multi-fault feature detection of rolling element bearing by an iterative generalized demodulation algorithm under time-varying rotational speed[J]. Journal of vibration and shock, 2018,37(04):177-183+190.(in Chinese)
[6] 张云强,张培林,王怀光,杨玉栋,吴定海.结合VMD和Volterra预测模型的轴承振动信号特征提取[J].振动与冲击,2018,37(03):129-135+152.
 ZHANG Y Q, ZHANG P L, WANG H G,et al.Feature extraction method for rolling bearing vibration signals based on VMD and Volterra prediction model[J]. Journal of vibration and shock, 2018,37(03):129-135+152.(in Chinese)
[7] 袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007(11):29-35+58+181.
 YUAN S F,CHU F L.Support vector machines and its applications in machine fault diagnosis[J]. Journal of vibration and shock, 2007 (11): 29-35+58+181. (in Chinese)
[8] 刘树林,蒋超,张宏利.基于量子遗传算法优化RVM的滚动轴承智能故障诊断[J].振动与冲击,2015, 34(17):207-212.
 WANG B,LIU S L,JIANG C,at al.Rolling bearing intelligent fault diagnosis based on RVM optimized with Quantum genetic algorithm[J].Journal of vibration and shock,2015,34(17):207-212.(in Chinese)
[9] 赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6):136-140.
 ZHAO Z H,YANG S P.Sample entropy-base  roller bearing fault diagnosis method[J]. Journal of vibration and shock,, 2012, 31(6):136-140.(in Chinese)
[10] 向丹, 岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报, 2015, 30(5):1149-1155.
 XIANG D,CEN J. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power,2015, 30(5):1149-1155.(in Chinese)
[11] 万书亭, 佟海侠, 董炳辉. 基于最小二乘支持向量机的滚动轴承故障诊断[J]. 振动、测试与诊断, 2010, 30(2):149-152.
 WAN S T,TONG H X,DONG B H.Bearing fault diagnosis using wavelet packet transform and least square support vector machines[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(2):149-152.(in Chinese)
[12] 郑红, 周雷, 杨浩. 基于小波包分析与多核学习的滚动轴承故障诊断[J]. 航空动力学报, 2015, 30(12): 3035-3042.
 ZHENG H,ZHOU L,YANG H.Rolling bearing fault diagnosis based on wavelet packet analysis and multi kernel learning[J]. Journal of Aerospace Power ,2015, 30(12):3035-3042.(in Chinese)
[13] Li B, Chow M Y, Tipsuwan Y, et al. Neural- network -based motor rolling bearing fault diagnosis[J]. Industrial Electronics IEEE Transactions on, 2000, 47(5):1060- 1069.
[14] Kanai R A, Desavale R G, Chavan S P. Experimental- Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network[J]. Journal of Tribology, 2016, 138(3).
[15] PI J, HUANG J, MA L. Aeroengine Fault Diagnosis Using Optimized Elman Neural Network [J]. Mathematical Problems in Engineering, 2017, (2017- 12-19), 2017, 2017(9):1-8.
[16] Zhao N, Zheng H, Yang L, Wang Z. A Fault Diagnosis Approach for Rolling Element Bearing Based on S-Transform and Artificial Neural Network. ASME. Turbo Expo: Power for Land, Sea, and Air,Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy(): V006T05A003. doi:10.1115/GT2017-63253.
[17] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and applications[J]. Neurocomputing, 2006, 70(1–3):489-501.
[18] Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10):1759-1763.
[19] 卢锦玲, 绳菲菲, 赵洪山. 基于极限学习机的风电机组主轴承故障诊断方法[J]. 可再生能源, 2016, 34(11): 1588-1594.
 LU J L, SHENG F F,ZHAO H S.Fault diagnosis method of wind turbine main bearing based on extreme learning machine[J].Renewable energy resources, 2016, 34(11):1588-1594.(in Chinese)
[20] 徐继亚, 王艳, 纪志成. 基于鲸鱼算法优化WKELM的滚动轴承故障诊断[J]. 系统仿真学报, 2017(9): 2189-2197.
 XU J Y,WANG Y,JI Z C.Fault diagnosis method of rolling bearing based on WKELM optimized by whale optimization algorithm[J].Journal of system simulation, 2017(9):2189-2197.(in Chinese)
[21] YANG X, PANG S, SHEN W, et al. Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine[J]. International Journal of Aerospace Engineering, 2016,(2016-1-26), 2016, 2016:1-10.
[22] LU J, HUANG J, LU F. Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle[J]. Energies, 2017, 10(1):39.
[23] YAN M, HU H, OTAKE Y, et al. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two phase flow[J]. Measurement Science & Technology, 2018
[24] LEE C W, LIN B Y, SCIUBBA E. Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting[J]. Energies, 2017, 10(11):1832.
[25] PAN C.Quantum-Inspired Evolutionary Algorithm for Continuous Space Optimization[J]. Neurocomputing, 2008, 72(1–3):581-591.
[26] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879.

PDF(1841 KB)

384

Accesses

0

Citation

Detail

段落导航
相关文章

/