现代建筑的结构高度日益增加,高层建筑截面形式更加多样。近年来,我国出现了许多新型截面形式的超高层建筑,其风荷载的控制是结构风工程领域的研究重点。针对类矩形截面和圆形截面的超高层建筑,基于计算流体动力学方法和ANSYS/ FLUENT软件,数值模拟分析不同截面超高层建筑的表面风压分布规律,不同风向角下典型测点的平均风压系数,开展行人高度处风速的比较分析,研究超高层建筑抗风形体优化。结果表明,在超高层建筑转角处,因气流分离的不连续性而出现负风压最大值;风向角对切角矩形截面超高层建筑的风压分布影响显著,当截面切角正对来风方向时,其风压分布最不利;圆形截面超高层建筑负风压量值较小,且利于满足行人风安全性和风舒适性的要求,具有良好的抗风性能。
Abstract
The height of modern architectures is increasing and the cross-section shape of high-rise buildings is becoming more diverse.In recent years, high-rise buildings with unconventional configurations have been constructed in China, which brings new challenges to wind engineering.Aiming at super high-rise buildings with rectangular-category and circular sections, based on the computational fluid dynamics (CFD) method and the ANSYS/FLUENT software, the wind pressure distribution and wind pressure coefficient at typical points of the super high-rise buildings with different section shapes were numerically simulated in different incoming wind directions to study the wind-resistant shape optimization of the super high-rise buildings.The results show that the maximum negative peak pressure occurs at the corner of super high-rise buildings due to the discoutinuity of the airflow separation at the corner edge.The super high-rise buildings with lacking-angle rectangular section have the most unfavorable wind pressure distribution when the incoming wind direction is directly facing the lacking-angle corner.The super high-rise buildings with circular section bear lower negative pressure, which is advantageous to wind-resistance ability.
关键词
超高层建筑 /
计算流体动力学 /
风压分布 /
平均风压系数
{{custom_keyword}} /
Key words
super high-rise building /
Computational Fluid Dynamics /
wind pressure distribution /
wind pressure coefficient.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁洁民,吴宏磊,赵昕. 我国高度250m以上超高层建筑结构现状与分析进展[J]. 建筑结构学报,2014,35(3): 1-7.
DING Jiemin, WU Honglei, ZHAO Xin. Current situation and discussion of structural design for super high-rise buildings above 250m in China[J]. Journal of Building Structures, 2014, 35(3):1-7.
[2] 丁洁民,缫斯,吴宏磊,等. 上海中心大厦绿色结构设计关键技术[J]. 建筑结构学报,2017,38(3): 134-140.
DING Jiemin, CHAO Si, WU Honglei, et al. Key technology of green building in the Shanghai Tower structural design[J]. Journal of Building Structures, 2017, 38(3):134-140.
[3] 曹会兰,全涌. 方形截面超高层建筑的横风向气动阻尼风洞试验研究[J]. 土木工程学报,2013,46(4): 18-25.
CAO Huilan, QUAN Yong. Experimental study on across-wind aerodynamic damping of
square super-high-rise building[J]. China Civil Engineering Journal, 2013, 46(4):18-25.
[4] 黄剑,顾明. 超高层建筑风荷载和效应控制的研究及应用进展[J]. 振动与冲击,2013,32(10): 167-172.
HUANG Jian, GU Ming. Control of wind loading and effects of super-tall buildings: state of the art[J]. Journal of Vibration and Shock, 2013, 32(10):167-172.
[5] 黄铭枫. 基于风振性能的高层建筑抗风设计优化[J]. 工程力学,2013,30(2):240-246.
HUANG Mingfeng. Wind-induced vibration performance-based optimal structural design of tall buildings [J]. Engineering Mechanics, 2013, 30(2):240-246.
[6] 杨明. 高层建筑风荷载及风致响应研究[D]. 长沙:湖南大学,2013.
[7] 燕辉. 复杂体型高层建筑风荷载及风振响应研究[D]. 杭州:浙江大学,2004.
[8] 谢壮宁,李佳,石碧青. 3栋典型超高层建筑气动荷载特性及风振控制措施[J]. 建筑结构学报,2014,35(4):289-296.
XIE Zhuangning, LI Jia, SHI Biqing. Aerodynamic loading properties and strategy of reduction of three typical super tall buildings[J]. Journal of Building Structures, 2014, 35(4):289-296.
[9] 申建红,李春祥. 强风作用下超高层建筑风场特性的实测研究[J]. 振动与冲击,2010,29(5): 62-68.
SHEN Jianhong, LI Chunxiang. Study on the measurement for wind field characteristics of super high-rise buildings[J]. Journal of Vibration and Shock, 2010, 29(5):62-68.
[10] GB50009-2012,建筑结构荷载规范[S].
[11] 王磊,梁枢果,邹良浩,等. 超高层建筑抗风体型选取研究[J]. 湖南大学学报(自然科学版),2013,40(11):34-39.
WANG Lei, LIANG Shu-guo, ZOU Liang-hao, et al. Study on the body shape selection of super high-rise building from the point of wind resistance[J]. Journal of Hunan University(Natural Sciences), 2013, 40(11):34-39.
[12] 李毅. L型截面高层建筑风荷载特性及其优化设计研究[D]. 长沙:湖南大学,2015.
[13] 廖朝阳. 不同横截面高层建筑全风向气动性能CFD数值模拟研究[D]. 长沙:湖南大学,2014.
[14] 蔡洪昌. 考虑脉动风和耦合效应的高层建筑结构风振CFD数值模拟[D]. 哈尔滨:哈尔滨工业大学,2012.
[15] 唐意,金新阳,杨立国. 错列布置超高层建筑群的干扰效应研究[J]. 土木工程学报,2012,45(8): 97-103.
TANG Yi, JIN Xinyang, YANG Liguo. Study of the interference effects of wind loads on tall buildings in staggered arrangement[J]. China Civil Engineering Journal, 2012,45(8):97-103.
[16] 李正良,魏奇科,黄汉杰,等. 山地超高层建筑风致响应研究[J]. 振动与冲击,2011,30(5):43-48.
LI Zhengliang, WEI Qike, HUANG Hanjie, et al. Wind-induced response of super tall buildings in hilly terrain[J]. Journal of Vibration and Shock, 2011, 30(5):43-48.
[17] 方平治,史军,王强,等. 上海陆家嘴区域建筑群风环境数值模拟研究[J]. 建筑结构学报,2013,34(9):104-111.
FANG Pingzhi, SHI Jun, WANG Qiang, et al. Numerical study on wind environment among tall buildings in Shanghai Lujiazui Zone[J]. Journal of Building Structures, 2013, 34(9):104-111.
[18] 周鲁敏. 某双塔楼超高层建筑平均风荷载及干扰效应数值模拟研究[J]. 建筑技术, 2015, 46(05): 467-470.
ZHOU Lumin. Numerical simulation of mean wind loads and interference effect on square-section super high-rise buildings[J]. Architecture Technology, 2015, 46(05): 467-470.
[19] Elsa Aristodemou, How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood[J]. Environmental Pollution, 2018, 233:782-796.
[20]Ahmed Elshaer , Enhancing wind performance of tall buildings using corner aerodynamic optimization[J]. Engineering Structures, 2017, 136:133-148.
[21] 张建,杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学报,2009,27(6):729-735.
ZHANG Jian, YANG Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6):729-735.
[22] 苏小兵. 基于CFD的超高层建筑风荷载和绕流特性分析[D]. 长沙:湖南大学,2014.
[23]Ahmed Elshaer, Anant Gairola, et al, Variations in wind load on tall buildings due to urban development, In Sustainable Cities and Society, Volume 34, 2017, Pages 264-277, ISSN 2210-670.
[24]Alexandre Luis Braun, Armando Miguel Awruch, Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation, In Computers & Structures, Volume 87, Issues 9–10, 2009, Pages 564-581, ISSN 0045-7949.
[25]黄鹏,顾明,全涌. 高层建筑标准模型风洞测压和测力试验研究 [J]. 力学季刊,2008,29(04):627-633.
HUANG Peng, GU Ming, QUAN Yong. Wind Tunnel Test Research on CAARC Standard Tall Building Model[J]. Chinese Quarterly of Mechanics, 2008, 29(04):627-633.
[26]黄本才,汪丛军.结构抗风分析原理及应用[M].上海:同济大学出版社,2008:172.
[27]王硕. 基于CFD方法的行人高度处风环境研究 [D]. 同济大学, 2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}