为了提高爆破振动强度预测精度,提出了基于Adaboost-SVM组合算法的爆破振动强度预测方法。采用主分量分析法,从7种爆破振动强度影响因素中确定了3类主要因素,并建立训练样本集,选用高斯径向基核函数建立SVM预测模型,经过对模型参数不断训练和优化调整,实现了对爆破振动强度的预测,最后通过Adaboost-SVM组合算法构建预测模型,进一步提升了预测精度。结果表明,SVM模型在预测精度上高于传统经验公式法和BP神经网络法,且训练速度更快;而提出的Adaboost-SVM组合算法能够进一步将预测精度提高至97%以上。
Abstract
In order to improve the prediction accuracy of blasting vibration intensity, a prediction method of blasting vibration intensity based on Adaboost-SVM combined algorithm was proposed.By using the principal component analysis method, three main factors were determined from seven kinds of influencing factors of blasting vibration intensity, and the training sample set was established.The SVM prediction model was established by selecting the Gaussian radial basis kernel function.The model parameters were continuously trained and optimized,thus the prediction of blasting vibration intensity was realized.Finally, the prediction model was constructed by Adaboost-SVM combined algorithm, and the prediction accuracy was further improved.It was shown that the prediction accuracy of SVM model is higher than that of traditional empirical formula method and BP neural network method, and the training speed is faster.The proposed Adaboost-SVM combination algorithm can further improve the prediction accuracy to above 97%.
关键词
爆破振动 /
预测 /
Adaboost /
主分量分析 /
支持向量机
{{custom_keyword}} /
Key words
blasting vibration /
prediction /
Adaboost /
Principal Component Analysis /
Support Vector Machine
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 言志信,言浬,江平,等. 爆破振动峰值速度预报方法探讨[J]. 振动与冲击,2010,29(5):179-182.
YAN Zhi-xin, YAN Li, JIANG Ping, et al. Prediction methods for blasting-induced ground vibration velocity [J]. Journal of vibration and shock, 2010, 29(5): 179-182, 249.
[2] 董建超,杨铁军,李新辉,等. 主分量分析在激励源识别中的应用研究[J]. 振动与冲击,2013,32(24):157-163.
DONG Jian-chao, YANG Tie-jun, LI Xin-hui, et al.Applications of principal component analysis in excitation source identification [J]. Journal of vibration and shock, 2013, 32(24): 157-163.
[3] 罗瑜. 支持向量机在机器学习中的应用研究[D]. 博士学位论文,昆明:西南交通大学,2007.
LUO Yu. Study on application of SVM on machine learning [D]. Doctaoral Dissertation, Kunming: Southwest Jiaotong University, 2007
[4]张震,汪斌强,梁宁宁,等. 一种基于AdaBoost-SVM的流量分类方法[J]. 计算机应用研究,2013,30(5):1481-1485.
ZHANG Zhen, WANG Bin-qiang, LIANG Ning-ning, et al. Internet traffic classifica-tion based on AdaBoost-SVM[J]. Application Research of Computers, 2013, 30(5):1481-1485.
[5] 庞伟. 基于FPGA的Adaboost人脸检测算法设计与验证[D].硕士学位论文,南京:东南大学,2017.
PANG Wei. Design and validation of Adaboost face detection algorithm based on FPGA [D]. Master Dissertation, Nanjing: Southeast University, 2017.
[6] 陆凡东,方向,沈蔚,等. 基于微粒优化支持向量机的爆破振动强度预报及应用研究[J]. 工程爆破,2009,15(3):22-24,39.
LU Fan-dong, FANG Xiang, SHEN Wei, et al. Prediction and application of blasting vibration intensity based on support vector machine with particle swarm optimization algorithm [J]. Engineering blasting, 2009, 15(3): 22-24, 39.
[7] 史秀志,董凯程,邱贤阳,等. 基于支持向量机回归爆破振动速度预测分析[J]. 工程爆破,2009,15(3):28-30.
SHI Xiu-zhi, DONG Kai-cheng, QIU Xian-yang, et al. Analysis of the PPV prediction of blasting vibration based on support vector machine regression [J]. Engineering blasting, 2009, 15(3): 28-30.
[8] 欧敏,林从谋. 支持向量机预测高边坡爆破质点振动速度[J].金属矿山,2011,(6):56-58.
OU Min, LIN Cong-mou. Prediction of high slope blasting vibration based on support vector machine [J]. Metal mine, 2011, (6): 56-58.
[9] 赵蔷. 主成分分析方法综述[J]. 软件工程,2016,19(6):1-3.
ZHAO Qiang. A Review of Principal Component Analysis [J]. Software engineering, 2016, 19(6): 1-3.
[10]Kwitt.R.Meerwald & Uhl.A.Lightweight detection of additivewatermarking in the DWT domain[J].IEEE Transactions onImage Processing,2013(2):474-484.
[11] 陈汉骄,陈杰,冷用斌,等. 主成分分析方法在空间干涉仪图像处理中的应用 [J]. 强激光与粒子束,2016,28(12):(125103-1)-(125103-8).
CHEN Han-jiao, CHEN Jie, LENG Yong-bin, et al. Principal component ananlysis for interferometer image processing in SSRF[J].High Power Laser and Particle Beams, 2016, 28(12): (125103-1)-(125103-8).
[12] 琚棋定,胡友彪,张淑莹.基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究[J]. 煤炭工程,2018,50(12):90-94.
JU Qi-ding,HU You-biao,ZHANG Shu-ying. Mine water inrush source identification method based on principalcomponent analysis and Bayesian discriminant[J]. Coal Engineering,2018,50(12): 90-94.
[13] 唐舟进,任峰,彭涛,等. 基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法[J]. 物理学报,2014,63(5):1-10.
TANG Zhou-Jin, REN Feng, PENG Tao, et al. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction[J]. Acta Phys. Sin. 2014, 63(5): 1-10.
[14] 肖婷,汤宝平,秦毅,等. 基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击,2015,34(9):149-153.
XIAO Ting, TANG Bao-ping, QIN Yi, et al. Degradation trend prediction of rolling bearing based on manifold learning and least squares support vector machine [J]. Journal of vibration and shock, 2015, 34(9): 149-153.
[15] 于霜,刘国海,夏荣盛,等. 基于Adaboost及谱回归判别分析的近红外光谱固态发酵过程状态识别[J]. 光谱学与光谱分析,2016,36(1):51-54.
YU Shuang, LlU Guo-hai, XlA Rong-shcng, et al. State Recognition of Solid Fermentation Spectroscopy with Adaboost and Spectral Analysis Process Based on Near Infrared Regression Discriminant [J]. Spectroscopy and spectral analysis, 2016, 36(1): 51-54.
[16] 舒坚,刘满兰,郑巍. 基于AdaBoost的链路质量预测机制研究[J]. 通信学报,2017,38(Z1):39-45.
SHU Jian, LIU Man-lan, ZHENG Wei. Study on AdaBoost-based link quality prediction mechanism [J]. Journal on Communications, 2017, 38(Z1): 39-45.
[17] 唐海,石永强,李海波,等.基于神经网络的爆破振动速度峰值预报[J].岩石力学与工程学报,2007,26(1):3534- 3538.
TANG Hai, SHI Yongqiang, LI Haibo, et al. Prediction of peak velocity of blasting vibration based on neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 3533-3539.
[18] 程康, 沈伟, 陈庄明,等. 工程爆破引起的振动速度计算经验公式及应用条件探讨[J]. 振动与冲击,2011,30(6):127-129.
CHENG Kang, SHEN Wei, CHEN Zhuang-ming, et al. Inquiry into calculation formula for vibration velocity induced by engineering blasting and its application conditions [J]. Journal of vibration and shock, 2011, 30(6): 127-129.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}