振动响应传递率及其工作模态分析方法综述

李星占1,2,岳晓斌1,黄文1,董兴建2,彭志科2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 24-34.

PDF(2178 KB)
PDF(2178 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 24-34.
论文

振动响应传递率及其工作模态分析方法综述

  • 李星占1,2,岳晓斌1,黄文1,董兴建2,彭志科2
作者信息 +

Vibration response transmissibility and operational modal analysis methods: a review and comparative study

  • LI Xingzhan1, 2,YUE Xiaobin1,HUANG Wen1,DONG Xingjian2,PENG Zhike2
Author information +
文章历史 +

摘要

基于振动响应传递率的工作模态分析方法是近年来出现的一类新的频域工作模态分析方法。由于振动响应传递率独特的动力学特性,该类方法得到了迅速的发展。从以下三个方面对振动响应传递率及其工作模态分析方法进行综述:振动传递率的概念、振动传递率的估计方法和基于振动传递率的工作模态辨识方法。在对各种辨识方法原理介绍的基础上,分析其特点及其存在的问题。结合多自由度系统模型,采用四种具有代表性的辨识方法对不同激励情况下的工作模态进行辨识,并对辨识结果以及方法的局限性进行了分析比较。

Abstract

The vibration esponse transmissibility based operational modal analysis is a kind of novel frequency domain method proposed in the past few years.Owing to the unique dynamic properties of transmissibility, this kind of method has been developed rapidly.The response transmissibility and operational modal analysis methods were reviewed from three areas as follows: the concept of transmissibility, the estimation of transmissibility and the operational modal identification methods based on the transmissibility.Aiming at a muti-degree of freedom system, four representative methods were applied in the operational modal analysis under different excitation conditions.The identification results and the limitation of these methods were analyzed and compared.

关键词

振动传递率 / 工作模态 / 模态辨识 / 虚假模态

Key words

transmissibility / operational modal analysis / modal identification / spurious mode

引用本文

导出引用
李星占1,2,岳晓斌1,黄文1,董兴建2,彭志科2. 振动响应传递率及其工作模态分析方法综述[J]. 振动与冲击, 2019, 38(18): 24-34
LI Xingzhan1, 2,YUE Xiaobin1,HUANG Wen1,DONG Xingjian2,PENG Zhike2. Vibration response transmissibility and operational modal analysis methods: a review and comparative study[J]. Journal of Vibration and Shock, 2019, 38(18): 24-34

参考文献

[1] 李德葆, 陆秋海. 实验模态分析及其应用[M]. 科学出版社, 2001.
LI De-bao, LU Qiu-hai. Experimental modal analysis and its application [M]. Science Press, 2001.
[2] 叶锡钧, 颜全胜, 李健, 等. 基于环境激励的大跨度斜拉桥模态参数和索力识别[J]. 振动与冲击, 2012, 31(16):157-163.
YE Xi-jun, YAN Quan-sheng, LI Jian, et al. Modal identification and cable tension estimation of long span cable-stayed bridge based on ambient excitation [J]. Journal of Vibration and Shock, 2012, 31(16): 157-163.
[3] WANG T, CELIK O, CATBAS F N, et al. A frequency and spatial domain decomposition method for operational strain modal analysis and its application [J]. Engineering Structures, 2016, 114(1): 104-112.
[4] 张敏, 徐霄龙, 陈玉静, 等. 环境激励下海上风电结构模态参数识别[J]. 中国海洋大学学报(自然科学版)自然科学版, 2016, 46(8): 122-130.
ZHANG Min, XU Xiao-long, CHEN Yu-jing, et al. Modal parameter identification for offshore wind turbine structures under ambient excitation [J]. Periodical of Ocean University of China, 2016, 46(8): 122-130.
[5] 董霄峰, 练继建, 杨敏, 等. 谐波干扰下海上风机结构工作模态识别[J]. 振动与冲击, 2015, 34(10): 152-6.
DONG Xiao-feng,LIAN Ji-jian,YANG Min, et al. Operational modal identification of offshore wind turbine structure considering the harmonic interference [J]. Journal of Vibration and Shock, 2015, 34(10): 152-156.
[6] ZAGHBANI I, SONGMENE V. Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis [J]. International Journal of Machine Tools & Manufacture, 2009, 49(12): 947-957.
[7] 赵川, 王红军, 张怀存, 等. 高速电主轴运行状态下模态识别及高速效应分析[J]. 机械科学与技术, 2016, 35(6): 846-852.
ZHAO Chuan, WANG Hong-jun, ZHANG Huai-cun, et al. Modal parameter identification and high-speed effects analysis of a high speed motorized spindle under running state [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(6): 846-852.
[8] 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4): 46-53.
LIU Yu-fei, XIN Ke-gui, FAN Jian-sheng, et al. A review of structure modal identification methods through ambient excitation [J]. Engineering Mechanics, 2014, 31(4): 46-53.
[9] 续秀忠, 华宏星, 陈兆能. 基于环境激励的模态参数辨识方法综述[J]. 振动与冲击, 2002, 21(3): 1-5.
XU Xiu-zhong, HUA Hong-xing, CHEN Zhao-neng. A review of modal parameter identification methods under ambient excitation [J]. Journal of Vibration and Shock, 2002, 21(3): 1-5.
[10] DEVRIENDT C, GUILLAUME P. Operational Modal Analysis in the Presence of Unknown Arbitrary Loads Using Transmissibility Measurements[C]// Proceedings of the Thirteenth International Congress on Sound and Vibration (ICSV13), 2006.
[11] UNGAR E E. Equality of force and motion transmissibilities [J]. Journal of the Acoustical Society of America, 1991, 90(1): 596-597.
[12] PAIPETIS S A, VAKAKIS A F. A method of analysis for unidirectional vibration isolators with many degrees of freedom [J]. Journal of Sound & Vibration, 1985, 98(1): 13-23.
[13] VAKAKIS A F, PAIPETIS S A. Transient response of unidirectional vibration isolators with many degrees of freedom [J]. Journal of Sound & Vibration, 1985, 99(4): 557-562.
[14] Varoto P S, McConnell K G. Single point vs. multi point acceleration transmissibility concepts in vibration testing[C]//Society for Experimental Mechanics, Inc, 16th International Modal Analysis Conference. 1998, 1: 183-190.
[15] Liu W, Ewins D J. Transmissibility properties of MDOF systems[C]//Proceedings-spie the international society for optical engineering. 1998, 2: 847-854.
[16] RIBEIRO A, SILVA J, MAIA N. On the generalisation of the transmissibility concept [J]. Mechanical Systems and Signal Processing, 2000, 14(1): 29-35.
[17] MAIA N, SILVA J, RIBEIRO A. The transmissibility concept in multi-degree-of-freedom systems [J]. Mechanical Systems and Signal Processing, 2001, 15(1): 129-37.
[18] Ribeiro A M R, Maia N M M, Silva J M M. Experimental evaluation of the transmissibility matrix[C]//Proceedings of IMAC. Kissimmee (FL), USA, 1999.
[19] FONTUL M, RIBEIRO A, SILVA J, et al. Transmissibility matrix in harmonic and random processes [J]. Shock and Vibration, 2004, 11(5): 563-571.
[20] MAIA N M, URGUEIRA A P, ALMEIDA R A. Whys and wherefores of transmissibility [M]. Vibration Analysis and Control-New Trends and Developments. InTech. 2011.
[21] LAGE Y E, NEVES M M, MAIA N M M, et al. Force transmissibility versus displacement transmissibility [J]. Journal of Sound & Vibration, 2014, 333(22): 5708-5722.
[22] LAW S, LI J, DING Y. Structural response reconstruction with transmissibility concept in frequency domain [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968.
[23] MAIA N M, URGUEIRA A, ALMEIDA R. An Overview of the Transmissibility Concept and Its Application to Structural Damage Detection [M]. Topics in Modal Analysis I, Volume 5. Springer. 2012: 137-151.
[24] URGUEIRA A P, ALMEIDA R A, MAIA N M. On the use of the transmissibility concept for the evaluation of frequency response functions [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 940-951.
[25] LAGE Y, MAIA N, NEVES M, et al. Force identification using the concept of displacement transmissibility [J]. Journal of Sound and Vibration, 2013, 332(7): 1674-1686.
[26] GUASCH O, GARC A C, JOV  J, et al. Experimental validation of the direct transmissibility approach to classical transfer path analysis on a mechanical setup [J]. Mechanical Systems and Signal Processing, 2013, 37(1): 353-369.
[27] DEVRIENDT C. On the use of transmissibility functions in operational modal analysis: an overview of the method and an introduction to recent developments and future work[C]//Proceedings of the 4th IOMAC, 2011.
[28] WEIJTJENS W, SITTER G D, DEVRIENDT C, et al. Operational modal parameter estimation of MIMO systems using transmissibility functions [J]. Automatica, 2014, 50(2): 559-564.
[29] YAN W J, REN W X. Operational modal parameter identification from power spectrum density transmissibility [J]. Computer‐Aided Civil and Infrastructure Engineering, 2012, 27(3): 202-217.
[30] ARAJO I G, LAIER J E. Operational modal analysis approach based on multivariable transmissibility with different transferring outputs [J]. Journal of Sound & Vibration, 2015, 351:90-105.
[31] YAN W J, REN W X. Use of Continuous-Wavelet Transmissibility for Structural Operational Modal Analysis [J]. Journal of Structural Engineering Asce, 2013, 139(9): 1444-1456.
[32] DEVRIENDT C, DE SITTER G, VANLANDUIT S, et al. Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 621-635.
[33] MAO Z, TODD M. A model for quantifying uncertainty in the estimation of noise-contaminated measurements of transmissibility [J]. Mechanical Systems & Signal Processing, 2012, 28(2): 470-481.
[34] LECLERE Q, ROOZEN N, SANDIER C. On the use of the H s estimator for the experimental assessment of transmissibility matrices [J]. Mechanical Systems and Signal Processing, 2014, 43(1): 237-245.
[35] LECLERE Q, ROOZEN B, SANDIER C. Experimental estimation of transmissibility matrices [C]//Proceeding of the ISMA international conference on noise and vibration engineering. Leuven, 2012.
[36] 张永年. 基于传递率函数的运行状态模态分析方法及软件实现[D]. 南京航空航天大学, 2014.
ZHANG Yong-nian. Study of operational modality parameter identification method based on transmissibility [D]. Nanjing University of Aeronautics and Astronautics, 2014.
[37] 张昱. 传递率及其在运行模态分析中的应用[D]. 大连理工大学, 2016.
ZHANG Yu. Transmissibility and its application in operational modal analysis [D]. Dalian University of Technology, 2016.
[38] DEVRIENDT C, GUILLAUME P. Identification of modal parameters from transmissibility measurements [J]. Journal of Sound and Vibration, 2008, 314(1): 343-356.
[39] 张永年, 王彤, 夏遵平. 基于传递率函数的运行模态分析方法[J]. 振动、测试与诊断, 2015, 35(5): 945-949.
ZHANG Yong-nian, WANG Tong, XIA Zun-ping. Operational modal analysis method based on transmissibility functions [J]. Journal of Vibration,  Measurement & Diagnosis, 2015, 35(5): 945-949.
[40] CAUBERGHE B. Applied frequency-domain system identification in the field of experimental and operational modal analysis [D]. Praca doktorska, VUB, Brussel, 2004,
[41] PINTELON R, SCHOUKENS J. System identification: a frequency domain approach [M]. John Wiley & Sons, 2012.
[42] DEVRIENDT C, GUILLAUME P. The use of transmissibility measurements in output-only modal analysis [J]. Mechanical Systems and Signal Processing, 2007, 21(7): 2689-2696.
[43] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Transmissibility based operational modal analysis: on the use of the pseudo inverse approach[C]// Proceedings of the ISMA, 2012.
[44] DEVRIENDT C, WEIJTJENS W, DE SITTER G, et al. Combining multiple single-reference transmissibility functions in a unique matrix formulation for operational modal analysis [J]. Mechanical Systems and Signal Processing, 2013, 40(1): 278-287.
[45] DEVRIENDT C, DE SITTER G, GUILLAUME P. An operational modal analysis approach based on parametrically identified multivariable transmissibilities [J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1250-1259.
[46] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Operational Modal Analysis Based on Multivariable Transmissibility Functions: Revisited [M]. Topics in Dynamics of Civil Structures, Volume 4. Springer. 2013: 317-326.
[47] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Operational modal parameter estimation of MIMO systems using transmissibility functions [J]. Automatica, 2014, 50(2): 559-564.
[48] 周思达, 刘莉, 杨武, 等. 基于响应传递率的非白随机激励仅输出结构模态参数辨识[J]. 振动与冲击, 2014, 33(23): 47-52.
ZHOU Si-da, LIU Li, YANG Wu, et al. Output-only structural modal parameter estimation under no-white excitations based on response transmissibility [J]. Journal of Vibration and Shock, 2014, 33(23): 47-52.
[49] WEIJTJENS W, LATAIRE J, DEVRIENDT C, et al. Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions [J]. Mechanical Systems and Signal Processing, 2014, 49(1): 154-164.
[50] WEIJTJENS W, LATAIRE J, DEVRIENDT C, et al. Transmissibility based OMA for time-varying loading conditions[C]// Proceedings of the ISMA, 2014.
[51] DEVRIENDT C, DE SITTER G, DE TROYER T, et al. On the use of transmissibility functions in operational modal analysis: an overview of the method and an introduction to recent developments and future work[C]// Proceedings of the 4th IOMAC, 2011.
[52] DEVRIENDT C, STEENACKERS G, SITTER G D, et al. From operating deflection shapes towards mode shapes using transmissibility measurements [J]. Mechanical Systems & Signal Processing, 2010, 24(3): 665-677.
[53] WEIJTJENS W, SITTER G D, DEVRIENDT C, et al. Relative scaling of mode shapes using transmissibility functions [J]. Mechanical Systems & Signal Processing, 2013, 40(1): 269-277.
[54] ARAJO I G, LAIER J E. Operational modal analysis using SVD of power spectral density transmissibility matrices [J]. Mechanical Systems and Signal Processing, 2014, 46(1): 129-145.
[55] YAN W J, REN W X. An Enhanced Power Spectral Density Transmissibility (EPSDT) approach for operational modal analysis: Theoretical and experimental investigation [J]. Engineering Structures, 2015, 102:108-119.
[56] ARAUJO I G, SANCHEZ J A G, ANDERSEN P. Modal parameter identification based on combining transmissibility functions and blind source separation techniques[J]. Mechanical systems and Signal Processing, 2018, 105: 276-293.
[57] 张昱, 朱彤, 周晶. 多自由度系统中标量传递率的不变性及其应用[J]. 振动与冲击, 2015, 34(8): 151-156.
ZHANG Yu,ZHU Tong,ZHOU Jing. Invariability of scalar transmissibility in a MDOF system and its application [J]. Journal of vibration and shock, 2015, 34(8): 151-156.
[58] 张昱, 朱彤, 周晶. 对功率谱密度传递率作用原理的探究[J]. 振动工程学报, 2016, 29(6): 992-1002.
ZHANG Yu,ZHU Tong,ZHOU Jing. A study for principle of power spectrum density transmissibility [J]. Journal of Vibration Engineering, 2016, 29(6): 992-1002.
[59] YAN W-J, REN W-X. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part II: Probabilistic model and validation [J]. Mechanical Systems and Signal Processing, 2016, 80:78-98.
[60] YAN W-J, REN W-X. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals [J]. Mechanical Systems and Signal Processing, 2016, 80:58-77.
[61] YAN W-J, REN W-X. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis [J]. Mechanical Systems and Signal Processing, 2018, 98:1000-1019.
[62] DEVRIENDT C, GUILLAUME P, REYNDERS E, et al. Operational modal analysis of a bridge using transmissibility measurements[C]// Proceedings of the Proceedings of IMAC-25: A Conference and Exposition on Structural Dynamics, 2007.
[63] DE SITTER G, DEVRIENDT C, GUILLAUME P. Transmissibility-based operational modal analysis: Enhanced stabilisation diagrams [J]. Shock and Vibration, 2012, 19(5): 1085-97.
[64] 王泽飞, 戴晓超. 传递率法在高速动车组齿轮箱工作模态分析中的应用研究[J]. 科技经济导刊, 2016, 23): 36-7.
WANG Ze-fei, DAI Xiao-chao. Application of transmissibility in the operational modal analysis of gear box for high-speed train [J]. Journal of Science and Economics, 2016, 23): 36-7.
[65] 韩杰. 基于传递率的工作模态参数识别方法的研究 [D]. 太原理工大学, 2012.
HANG Jie. Study of operational modal analysis method based on transmissibility [D]. Taiyuan University of Technology, 2012. 
[66] TSAI P C, CHENG C C, CHENG Y C. A Novel method based on operational modal analysis for monitoring the preload degradation of linear guideways in machine tools [J]. Mechanical Engineering Journal, 2017, 4(2): 48-61.
[67] MAAMAR A, LE T P, GAGNOL V, et al. Operational modal analysis of a machine-tool structure during machining operations[C]// Congrès Français de Mécanique, 2017.
[68] MAAMAR A, ABDELGHANI M, LE T P, et al. Operational modal identification in the presence of harmonic excitation[J]. Applied Acoustics, 2018.
[69] KHODAYGAN S. Modal Parameter Identification of Rotary Systems Based on Power Spectral Density Transmissibility Functions[C]// WCX World Congress Experience, 2018.
[70] BRINCKER R, ZHANG L, ANDERSEN P. Modal identification from ambient responses using frequency domain decomposition[C]// Proceedings of the Proc of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, 2000.
[71] DE ROECK G, PEETERS B, REN W X. Benchmark Study on System Identification Through Ambient Vibration Measurements [C]// Proceedings of SPIE- The International Society for Optical Engineering, 2000.

PDF(2178 KB)

1639

Accesses

0

Citation

Detail

段落导航
相关文章

/