干气密封摩擦界面法向接触刚度分形模型

孙宝财1,2,丁雪兴1,陈金林1,张伟政1,严如奇2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 248-255.

PDF(1125 KB)
PDF(1125 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 248-255.
论文

干气密封摩擦界面法向接触刚度分形模型

  • 孙宝财1,2,丁雪兴1,陈金林1,张伟政1,严如奇2
作者信息 +

Fractal model for the normal contact stiffness of frictional interface in dry gas seals

  • SUN Baocai1,2,DING Xuexing1,CHEN Jinlin1,ZHANG Weizheng1, YAN Ruqi2
Author information +
文章历史 +

摘要

为揭示干气密封摩擦界面的摩擦振动规律,用分形参数表征干气密封摩擦界面形貌特性,根据重新建立的微凸体接触变形方式,以及概率理论建立了干气密封摩擦界面法向接触刚度分形模型。通过与相关实验数据和模型的对比,验证了本文模型的合理与正确。最后,对影响法向接触刚度的关键因素进行了数值分析,研究结果表明:法向接触刚度随分形维数、真实接触面积的增大而增大;当接触面积一定时,法向接触刚度随特征尺度、摩擦系数的增大逐渐减小。相比于分形维数、特征尺度对法向接触刚度的影响,摩擦系数的影响相对较小。这些研究结果为进一步研究干气密封摩擦振动奠定了基础。

Abstract

In order to reveal the frictional vibration behaviors of the frictional interface in dry gas seals, the end face morphology of dry gas seals was characterized by fractal parameters.According to a re-established contact deformation model for the micro-convex body and the probability theory,a fractal model for the normal contact stiffness of dry gas seals was established.The rationality and correctness of the model was verified by the comparison of the related experimental data with the model results.The key factors influencing the normal contact stiffness were analyzed numerically, and the results show that the normal contact stiffness increases with the increase of the fractal dimension and real contact area.When the contact area is fixed, the normal contact stiffness decreases with the increase of the characteristic scale and friction coefficient.The effect of the coefficient of friction on the normal contact stiffness is relatively small compared to the fractal dimension and the characteristic scale.The results provide a foundation for further study of the frictional vibration of dry gas seals.

关键词

干气密封 / 摩擦界面 / 分形理论 / 微凸体 / 法向接触刚度

Key words

dry gas seal / frictional interface / fractal theory / asperity / normal contact stiffness

引用本文

导出引用
孙宝财1,2,丁雪兴1,陈金林1,张伟政1,严如奇2. 干气密封摩擦界面法向接触刚度分形模型[J]. 振动与冲击, 2019, 38(18): 248-255
SUN Baocai1,2,DING Xuexing1,CHEN Jinlin1,ZHANG Weizheng1, YAN Ruqi2. Fractal model for the normal contact stiffness of frictional interface in dry gas seals[J]. Journal of Vibration and Shock, 2019, 38(18): 248-255

参考文献

[1] YANG H. Theoretical analyses and field applications of gas-film lubricated mechanical face seals with herringbone spiral grooves[J].Tribology Transactions, 2009, 52(6): 800-806.
[2] 陈源, 彭旭东, 李纪云, 等. 螺旋槽结构参数对干气密封动态特性的影响研究 [J]. 摩擦学学报, 2016, 36(4): 397-405.
CHEN Yuan, PENG Xudong, LI Jiyun, et al. The influence of structure parameters of spiral groove on dynamic characteristics of dry gas seal[J]. Tribology, 2016, 36(4): 397-405.
[3] BLASIAK S, LASKI P A, TAKOSOGLU J E. Parametric analysis of heat transfer in non-contacting face seals [J]. International Journal of Heat and Mass Transfer, 2013, 57 (1): 22-31.
[4] 丁雪兴, 刘勇, 张伟政, 等. 螺旋槽干气密封微尺度气膜的温度场计算 [J]. 化工学报, 2014, 65(4): 1353-1358.
DING Xuexing, LIU Yon, ZHANG Wei-zheng, et al. Calculation of temperation field of micro-scale gas film in spiral groove dry gas seal [J]. CIESC Journal, 2014, 65(4): 1353-1358.
[5] FAIRUZ Z M, JAHN I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333–347.
[6] SU H, RAHMANI R, RAHNEJAT H. Thermohydrodynamics of bidirectional groove dry gas seals with slip flow[J]. International Journal of Thermal Sciences, 2016, 110: 270–284.
[7] DING XUEXING, LU JUNJIE. Theoretical analysis and experiment on gas film temperature in a spiral groove dry gas seal under high speed and pressure[J]. International Journal of Heat & Mass Transfer, 2016, 96:438-450.
[8] FARIAMT C, MIRANDA W M. Pressure dam influence on the performance of gas face seals [J]. Tribology International, 2012, 47:134-141.
[9] 彭旭东, 宗聪, 江锦波. 干气密封单向螺旋槽及其衍生结构功能演变进展 [J]. 化工学报, 2017, 68(4): 1271-1281.
PENG Xudong, ZON Cong, JIANG Jingbo. Progress in dry gas seal performance evolution of unidirectional spiralgroove and its derivative structures[J]. CIESC Journal, 2017, 68(4): 1271-1281.
[10] 宗聪, 彭旭东, 江锦波, 等. 似叠罗汉槽干气密封的结构优选与性能研究 [J]. 摩擦学学报, 2017, 37(1): 121-129.
ZON Cong, PENG Xudong, JIANG Jingbo, et al.Geometric optimization and seal performance of a pyramid-like-groove dry gas seal [J]. Tribology, 2017, 37(1): 121-129.
[11] BO R. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals[J]. Journal of Tribology, 2002, 124(1):186–195.
[12] MILLER B A, GREEN I. Semi-analytical dynamic analysis of spiralgrooved mechanical gas face seals[J]. Journal of Tribology, 2003,125(2): 403–413.
[13] 韩明君, 李有堂, 朱丽, 等. 干气密封气膜-密封环系统角向摆动的失稳分析 [J]. 北京工业大学学报, 2012, 38(11): 1648-1653.
HAN Mingjun, LI Youtang, ZHU Li, et al. Instability analysis of angular wobbly for gas film and seal ring in the system of dry gas seal[J]. Journal of Beijing University of Technology, 2012, 38(11): 1648-1653.
[14] 彭旭东, 刘坤, 白少先, 等. 典型螺旋槽端面干式气体密封动压开启性能[J]. 化工学报, 2013, 64(1): 328-333.
PENG Xudong, LIU Kun, BAI Shaoxiang, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves [J]. CIESC Journal, 2013, 64(1): 328-333.
[15] 丁雪兴, 王平西, 张伟政, 等. 螺旋槽干气密封环端面摩擦试验及其性能分析 [J]. 化工学报, 2017, 68(1): 208-214.
DING Xuexing, WANG Pingxi, ZHANG Weizheng, et al. Analysis of tribological test and performance under rings end faces of spiral groove dry gas seal [J]. CIESC Journal, 2017, 68(1): 208-214.
[16] 葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22( 5) : 405-408.
GE Shirong, ZHU Hua. Complicate tribological systems and quantitative study methods of their problems[J]. Tribology,2002,22( 5) : 405-408.
[17] 庄艳, 李宝童, 洪军, 等. 一种结合面法向接触刚度计算模型的构建 [J]. 上海交通大学学报, 2013, 47(2): 180-186.
ZHAUNG Yan, LI Baotong, HONG Jun, et al. A normal contact stiffness model of the interface[J]. Journal of Shanghai Jao Tong University, 2013, 47(2): 180-186.
[18] 傅卫平, 娄雷亭, 高志强, 等. 机械结合面法向接触刚度和阻尼的理论模型 [J]. 机械工程学报, 2017, 53(9): 73-82.
FU Weiping, LOU Leiting, GAO Zhi-qiang, et al. Theoretical Model for the Contact Stiffness and Damping of Mechanical Joint Surface[J]. Journal of Mechanical Engineering, 2017, 53(9): 73-82.
[19] 田小龙, 王雯, 傅卫平, 等. 考虑微凸体相互作用的机械结合面接触刚度模型 [J]. 机械工程学报, 2017, 53(17): 149-159.
TIAN Xiaolong, WANG Wen, FU Weiping, et al. Contact Stiffness Model of Mechanical Joint Surfaces Considering the Asperity Interactions [J]. Journal of Mechanical Engineering, 2017, 53(17): 149-159.
[20] BUCZKOWSKI R, KLEIBER M. Statistical Models of Rough Surfaces for Finite Element 3D-Contact Analysis [J]. Archives of Computational Methods in Engineering, 2009, 16(4): 399-424.
[21] 张学良, 黄玉美, 韩颖. 基于接触分形理论的机械结合面法向接触刚度模型 [J]. 中国机械工程, 2000, 11(7): 727-729.
ZHANG Xueliang, HAUNG Meiyu, HAN Ying. Fractal model of the normal contact stiffness of machine joint surf aces based on the fractal contact theory[J]. China Mechanical Engineering, 2000, 11(7): 727-729.
[22] 温淑花, 张学良, 武美先, 等. 结合面法向接触刚度分形模型建立与仿真 [J]. 农业机械学报, 2009, 40(11): 197-202.
WEN Shuhua, ZHNAG Xueiang,WU Mei-xiang, et al. Fractal model and simulation of normal contact stiffness of joint interfaces and its simulation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 197-202.
[23] 尤晋闽, 陈天宁. 基于分形接触理论的结合面法向接触参数预估 [J]. 上海交通大学学报, 2011, 45(9): 1275-1280.
YOU Jinming, CHENG Tianning. Estimation for Normal Parameters of Joint Surfaces Based on Fractal Theory [J]. Journal of Shanghai Jao Tong University, 2011, 45(9): 1275-1280.
[24] 李小彭, 郭浩, 刘井年, 等. 考虑摩擦的结合面法向刚度分形模型及仿真 [J]. 振动测试与诊断, 2013, 33(2): 210-213+336.
LI Xiaopeng, GUO Hao, LIU Jingnian, et al. Fractal model and simulation of normal contact stif fness considering the friction between joint surfaces [J]. Journal of Vibration,Measurement & Diagnosis, 2013, 33(2): 210-213+336.
[25] JIANG SHUYUN,ZHENG YUNJIAN,ZHU HUA. A contact stiffness model of machined plane joint based on fractal theory[J]. Journal of Tribology,2010,132(1):0114011-7.
[26] 陈永会, 张学良, 温淑花, 等. 粗糙表面弹塑性接触连续光滑指数函数模型与法向接触刚度研究 [J]. 西安交通大学学报, 2016,50(7): 58-67.
CHENG Yonhui, ZHNAG Xueliang WEN Shuhua, et al. Research on continuous smooth exponential model of elastic-plastic contact stiffness of rough surface [J]. Journal of Xi’an JaoTong University, 2016,50(7): 58-67.
[27] 李小彭, 王雪, 运海萌, 等. 三维分形固定结合面法向接触刚度的研究 [J]. 华南理工大学学报(自然科学版), 2016, 44(1): 114-222.
LI Xiaopeng, WANG Xue, YUN Haimeng, et al. Investigation into normal contact stiffness of fixed joint surface with three-dimensional fractal[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(1): 114-222.
[28] 李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究 [J]. 西安交通大学学报, 2011,45(6): 69-74.
LI Huiguang, LIU Hen, YU Lie. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi’an JaoTong University, 2011,45(6): 69-74.
[29] 艾延廷, 翟学, 王志, 等. 法向接触刚度对装配体振动模态影响的研究 [J]. 振动与冲击, 2012, 31(6): 171-174.
AI Yanting, ZHAI Xue,WANG Zhi, et al. Influences of normal contact stiffness on an assembly's vibration modes [J]. Journal of Vibration and Shock, 2012, 31(6): 171-174.
[30] 刘意, 刘恒, 易均, 等. 计及塑性接触层的法向接触刚度等效方法 [J]. 振动与冲击, 2013,32(7): 43-47.
LIU Yi, LIU Hen, YI Jun, et al. Equivalent method for normal contact stiffness considering plastic contact layer[J]. Journal of Vibration and Shock, 2013,32(7): 43-47.
[31] 赵波, 戴旭东, 张执南, 等. 单峰接触研究及其在分形表面接触中的应用 [J]. 摩擦学学报,2014,34(2): 217-224.
ZHAO Bo, DAI Xuedong, ZHANG Zhinang, et al. Single asperity contact and its use for fractal surface contact J]. Tribology, 2014, 34(2): 217-224.
[32] 胡殿印, 司武林, 魏佳明, 等. 一种基于模态实验的结合面接触刚度计算方法 [J]. 航空动力学报, 2015, 30(1): 76-81.
HU Dianying, SI Wuling, WEI Jiaming, et al. A calculation method of contact stiffness between interfaces based on modal experiment [J]. Journal of Aerospace Power, 2015, 30(1): 76-81.
[33] 焦敬品, 曾宪超, 张强, 等. 基于微观模型分析的承压粗糙界面接触状态超声评价方法 [J]. 机械工程学报, 2011, 47(17): 78-83.
JIAO Jinping, ZENG Xianchao, ZHANG Qiang, et al. Micromechanical model of rough surface for evaluation of acoustic properties of pressure interfaces[J]. Journal of Mechanical Engineering,2011, 47(17): 78-83.
[34] TATTER SALL H G.The ultrasonic pulse-echo technique as applied to adhesion testing [J]. Journal of Physics D: Applied Physics, 1973,6(7) :819-832.
[35] 湛进, 李猛, 刘恒, 等. 基于超声和图像的法向刚度测量方法分析 [J]. 振动与冲击, 2017, 36(1): 64-69.
ZHAN Jing, LI Meng LIU Hen, et al. Normal contact stiffness measurement methods based on ultrasonic and image [J]. Journal of Vibration and Shock, 2017, 36(1): 64-69.
[36] 陈璐璐, 马艳红, 李迪, 等. 微动工况下接触刚度测试 [J]. 航空动力学报, 2010, 25(4): 936-942.
CHENG Lulu, MA Yanhong, LI D, et al. Measurement of contact stiffness during microslip [J]. Journal of Aerospace Power, 2010, 25(4): 936-942.
[37] 王雯, 吴洁蓓, 傅卫平, 等. 机械结合面法向动态接触刚度理论模型与试验研究 [J]. 机械工程学报, 2016, 52(13): 123-130.
WANG Wen, WU Jiebei, FU Weiping, et al. Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces[J]. Journal of Mechanical Engineering, 2016, 52(13): 123-130.
[38] 金雷, 贾振元, 刘巍. 压电力传感器晶片与电极接触刚度影响研究 [J]. 机械工程学报, 2016, 52(22): 15-23+30.
JIN Lei, JIA Zhengyuan, LIU Wei. Effect of contact stiffness between sheets and electrodes in piezoelectric force sensors[J]. Journal of mechanical engineering, 2016, 52(22): 15-23+30.
[39] 兰国生, 张学良, 丁红钦, 等. 基于分形理论的结合面改进接触模型 [J]. 农业机械学报, 2011,42(10): 217-223+229.
LAN Guosheng, ZHANG Xueliang, DING Hongqing, et al. Modified contact model of joint interfaces based on fractal theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(10): 217-223+229.
[40] 张学良, 陈永会, 温淑花, 等. 考虑弹塑性变形机制的结合面法向接触刚度建模 [J]. 振动工程学报, 2015,28(1): 91-99.
ZHANG Xueliang, CHENG Yonhui, WEN Shuhua, et al. The model of normal contact stiffness of joint interfaces incorporationg elastoplastic deformation mechanism [J]. Journal of Vibration Engineering, 2015,28(1): 91-99.
[41] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces [J]. Journal of Tribology, 1991, 113:1-11.
[42] WANG S, KOMVOPOULOS K. Fractal theory of the interfacial temperature distribution in the slow sliding regime: Part II - Multiple domains, elastoplastic contacts and applications [J]. Journal of Tribology, 1994, 116(4): 824-832.
[43] 丁雪兴, 严如奇, 贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析 [J]. 摩擦学学报, 2014, 34(4): 341-347.
DING Xuexing, YAN Ruqi, JIA Yonlei. Construction and analysis of fractal contact mechanics model [J]. Tribology, 2014, 34(4): 341-347.
[44] YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617-3624.
[45] WANG S, KOMVOPOULOS K. Fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I - Elastic contact and heat transfer analysis [J]. Journal of Tribology, 1994, 116(4): 812-823.

PDF(1125 KB)

401

Accesses

0

Citation

Detail

段落导航
相关文章

/