改进AMD广义形态分形维数和KFCMC的液压泵故障诊断方法

郑直1,姜万录2,3,王宝中1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 46-52.

PDF(3332 KB)
PDF(3332 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 46-52.
论文

改进AMD广义形态分形维数和KFCMC的液压泵故障诊断方法

  • 郑直1,姜万录2,3,王宝中1
作者信息 +

Hydraulic pump fault diagnosis method based on the improved AMD, generalizedmorphological fractal dimensions and kernel fuzzy C-means clustering

  • ZHENG Zhi1,JIANG Wanlu2, 3,WANG Baozhong1,WANG Ying1
Author information +
文章历史 +

摘要

针对液压泵故障诊断问题,提出了一种基于改进解析模态分解(AMD)、广义形态分形维数(GMFD)和核模糊C均值聚类(KFCMC)相结合的新方法。首先,根据故障特征频率先验知识,在有效二分频范围内对实测液压泵多模态故障振动信号进行AMD分解,并基于欧氏距离法选定实现最优分解的二分频;其次,将基于最优二分频所提取含有丰富运行特征信息的故障分量信号作为数据源,并提取GMFD作为特征向量;最后,利用KFCMC实现对液压泵不同故障的诊断。此外,还利用原始AMD、经验模态分解(EMD)、集总经验模态分解(EEMD)、局部均值分解(LMD)、变分模态分解(VMD)和模糊C均值聚类(FCMC)方法对上述信号进行分析,结果表明所提方法效果要优于上述传统分解和诊断方法。通过对仿真和实测液压泵故障振动信号的实验验证,表明该方法可以有效地诊断液压泵不同故障。

Abstract

Aiming at the fault diagnosis of hydraulic pumps, a new fusion  method was proposed based on the analysis mode decomposition(AMD), general morphological fractal dimensions(GMFD) and kernel fuzzy C-means clustering(KFCMC).Based on the priori knowledge about fault feature frequencies, the AMD was applied to decompose multi-mode vibration fault signals of a hydraulic pump in the effective range of bisecting frequency, and the best bisecting frequency for realizing optimal decomposition was chosen according to the Euclidean distance.Then, the mode extracted by virtue of the optimal bisecting frequency, which was rich in fault feature informations, was used as data sources to extract the GMFD and adopt it as feature vectors.Finally, the KFCMC was used to diagnose hydraulic pump faults.In addition, the methods of original AMD, experience mode decomposition(EMD), ensemble experience mode decomposition(EEMD), local mode decomposition(LMD), variational mode decomposition(VMD) and fuzzy C-means clustering(FCMC) were also used to decompose the signals, and it is shown that the proposed method is better than the others.Through the simulation and experiment verification on the fault signals of the tested hydraulic pump, it is shown that the proposed method is available to diagnose different hydraulic pump faults with an enough accuracy.

关键词

液压泵 / 解析模态分解 / 广义形态分形维数 / 核模糊C均值聚类

Key words

 hydraulic pump / analysis mode decomposition / general morphological fractal dimensions / kernel fuzzy c-means clustering

引用本文

导出引用
郑直1,姜万录2,3,王宝中1. 改进AMD广义形态分形维数和KFCMC的液压泵故障诊断方法[J]. 振动与冲击, 2019, 38(18): 46-52
ZHENG Zhi1,JIANG Wanlu2, 3,WANG Baozhong1,WANG Ying1. Hydraulic pump fault diagnosis method based on the improved AMD, generalizedmorphological fractal dimensions and kernel fuzzy C-means clustering[J]. Journal of Vibration and Shock, 2019, 38(18): 46-52

参考文献

[1] Lu C, Wang S, Makis V. Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J]. Aerospace Science & Technology, 2017, 67:105-117.
[2] Hua C, Zhang Q, Xu G, et al. Performance reliability estimation method based on adaptive failure threshold[J]. Mechanical Systems & Signal Processing, 2013, 36(2):505-519.
[3] 经哲, 郭利. 基于广义相关系数自适应随机共振的液压泵振动信号预处理方法[J]. 振动与冲击, 2016, 35(16):72-78.
Jing Z, Guo L. Hydraulic pump vibration signal pretreatment based on adaptive stochastic resonance with a general correlation function[J]. Journal of Vibration & Shock, 2016,
35(16):72-78.
[4] Chen G, Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechanical Systems & Signal Processing, 2012, 28(2): 258-279.
[5] 时培明, 苏翠娇, 赵娜,等. 基于AMD和自适应随机共振的旋转机械故障诊断方法研究[J]. 计量学报, 2017, 38(1): 112-116.
Shi P, Su C, Zhao N, et al. Study on fault diagnosis method for rotating machinery based on adaptive stochastic resonance and AMD[J]. Acta Metrologica Sinica, 2017 , 38 (1) :112-116
[6] 李晶, 曹登庆, 刘绍奎,等. 基于解析模态分解和希尔伯特变换的模态参数辨识新方法[J]. 振动与冲击, 2016, 35(1): 34-39.
Jing L, Cao D, Liu S, et al. A new method for modal parameter identification based on analytical modal decomposition and Hilbert transformation[J]. Journal of Vibration & Shock, 2016, 35(1): 34-39.
[7] Maragos P, Schafer R W. Morphological filters-Part I: their set-theoretic analysis and relations to liner shift-invariant filters[C]. IEEE Transactions on Acoustics, Speech, and
Signal Processing ASSP, 2008, 22(3): 597-610.
[8] Maragos P, Schafer R W. Morphological filters-part ii: their relations to median, order-statistic, and stack filters[C]. IEEE Transactions on Acoustics, Speech, and Signal
Processing ASSP, 2008, 22(3): 1170-1184.
[9] Li B, Zhang P, Wang Z, et al. Morphological covering based generalized dimension for gear fault diagnosis[J]. Nonlinear Dynamics, 2012, 67(4): 2561-2571.
[10] 陶新民, 徐晶, 付强, 等. 基于样本密度KFCM新算法及其在故障诊断的应用[J]. 振动与冲击, 2009, 28(8):61-64.
Tao X, Xu J, Fu Q, et al. Kernel fuzzy c-means algorithm based on distribution density and its application in fault diagnosis[J]. Journal of Vibration & Shock, 2009, 28(8): 61-64.
[11] Jiang W, Zheng Z, Zhu Y, et al. Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis[J].
Mechanical Systems & Signal Processing, 2015, 58-59: 179-205.
[12] 张亢, 程军圣, 杨宇. 基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J]. 振动与冲击, 2013, 32(9): 90-94.
Zhang K, Cheng J, Yang Y. Roller bearing fault diagnosis based on local mean decomposition and morphological fractal dimension[J]. Journal of Vibration & Shock, 2013, 32(9):
90-94.
[13] 张淑清, 孙国秀, 李亮, 等. 基于LMD近似熵和FCM聚类的机械故障诊断研究[J]. 仪器仪表学报, 2013, 34(3): 714-720.
Zhang S, Sun G, Li L, et al. Study on mechanical fault diagnosis method based on LMD approximate entropy and fuzzy C-means clustering[J]. Chinese Journal of Scientific
Instrument, 2013, 34(3):714-720.

PDF(3332 KB)

355

Accesses

0

Citation

Detail

段落导航
相关文章

/