水电站机组-厂房结构突增负荷过渡过程振动特性研究

吴嵌嵌1,张雷克2,3,马震岳4,王雪妮2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 53-61.

PDF(2672 KB)
PDF(2672 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (18) : 53-61.
论文

水电站机组-厂房结构突增负荷过渡过程振动特性研究

  • 吴嵌嵌1,张雷克2,3,马震岳4,王雪妮2
作者信息 +

Vibration characteristics of the unit-plant structure of a hydropower station under transient load-up process

  • WU Qianqian1,ZHANG Leike2,3,MA Zhenyue4,WANG Xueni2
Author information +
文章历史 +

摘要

水电站机组及厂房结构受水、机、电激励影响在过渡工况下振动问题突出,但现阶段相关理论研究严重滞后于工程实际,制约了该结构进一步寻求改善其瞬态振动的合理控制方式及技术措施。为此,本文以核心水力振源之一——尾水管压力脉动的构建为切入点,从理论分析的角度提出了一种在不同负荷工况下由尾水管偏心涡带诱发的水力激励数学表述,基于已有水力发电系统水-机-电-结构耦联模型,将系统突增负荷过渡过程纳入机组-厂房结构振动研究体系,并对结构在该非稳态运行情况下的振动特性进行了分析。计算结果表明,同稳态工况相比,机组各导轴承结构在瞬态工况下存在运行稳定性降低、振幅明显增大等现象。同时,相对于机组轴系,水电站厂房发电机层楼板在该过渡工况下的振动现象更为显著,特别是竖向振动情况异常突出,位移增幅可达其在稳态运行条件下的数倍。本文研究成果可为水电站机组-厂房结构在该过渡工况下的动力响应分析提供合理可靠的模型与研究方法。

Abstract

Influenced by hydraulic, mechanical and electrical excitations during transient process, the vibration of a hydraulic generating set and its plant structure may become extremely extrusive, however, currently the related theoretical investigation  obviously falls behind the practical engineering, which restricts the way in pursuit of reasonable control method and technology to further improve the non-stable oscillation problem for the structure.Taking the construction of one of the core hydraulic vibration sources, that is, the pressure fluctuation of draft tube, as the entry point, a mathematical expression for the hydraulic excitation induced by the eccentric vortex of draft tube under different load conditions was proposed in the theoretical analysis.Based on an existing hydraulic-mechanical-electrical-structural model for hydroelectric generation systems, the sudden load-up was integrated into the unit-plant vibration, system and the corresponding dynamic properties was investigated.It is shown from the results that, as compared with the case of stable running, the stability of all guide bearings decreases and the matching vibration amplitude notably increases when the system is operated in transient process.Meanwhile, in contrast with the unit shaft system, the oscillation of the generator floor is more dramatic, especially the vertical vibration appears abnormally prominent with a displacement amplification by several times of that under stable operation.The results can provide a reasonable and reliable model and method to the dynamic response analysis of the hydropower unit-plant structure under sudden load transition condition.

关键词

水电站 / 机组-厂房结构 / 尾水管压力脉动 / 突增负荷 / 瞬态振动

Key words

  / hydropower station;unit-plant structure;pressure fluctuation of draft tube;load-up process;transient vibration

引用本文

导出引用
吴嵌嵌1,张雷克2,3,马震岳4,王雪妮2. 水电站机组-厂房结构突增负荷过渡过程振动特性研究[J]. 振动与冲击, 2019, 38(18): 53-61
WU Qianqian1,ZHANG Leike2,3,MA Zhenyue4,WANG Xueni2. Vibration characteristics of the unit-plant structure of a hydropower station under transient load-up process[J]. Journal of Vibration and Shock, 2019, 38(18): 53-61

参考文献

[1]  马震岳,董毓新. 水轮发电机组动力学[M]. 大连:大连理工大学出版社,2003.
Ma Z Y,Dong Y X. Dynamics of Water Turbine Generator Set[M]. Dalian:Dalian University of Technology Press,2003.
[2]  马震岳,张运良,陈婧,等. 水电站厂房和机组耦合动力学理论及应用[M]. 北京:中国水利水电出版社,2013.
Ma Z,Zhang Y L,Chen J,et al. Theory and Application of Coupled Dynamics for Powerhouse and Hydraulic Generating Unit of Hydropower Station[M]. Beijing:China Water and Power Press,2013.
[3]  Wu Y,Li S,Liu S,et al. Vibration of Hydraulic Machinery[M]. Berlin:Springer,2013.
[4]  Ohashi H. Vibration and Oscillation of Hydraulic Machinery[M]. New York:Routledge,2016.
[5]  周建中,张勇传,李超顺. 水轮发电机组动力学问题及故障诊断原理与方法[M]. 武汉:华中科技大学出版社,2013.
Zhou J J,Zhang Y C,Li C S. Dynamic problems and Fault Diagnosis Methods of Hydroelectric Generating Set[M]. Wuhan:Huazhong University of Science and Technology Press,2013.
[6]  Zeng Y,Zhang L,Guo Y,et al. The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets[J]. Nonlinear Dynamics,2014,76(4):1921-1933.
[7]  吴嵌嵌,张雷克,马震岳. 水电站水机电-结构系统动力耦联模型研究及数值模拟[J]. 振动与冲击,2017,36(16):1-10.
Wu Q Q,Zhang L K,Ma Z Y. Model analysis and numerical simulation of a dynamic coupled hydraulic-mechanical-electric-structural system for a hydropower station[J]. Journal of Vibration and Shock,2017,36(16):1-10.
[8]  桂中华,常玉红,柴小龙,等. 混流式水轮机压力脉动与振动稳定性研究进展[J]. 大电机技术,2014(6):61-65.
Gui Z H,Chang Y H,Chai X L,et al. Current research of Francis hydro turbine pressure pulsation and vibration stability[J]. Large Electric Machine and Hydraulic Turbine,2014(6):61-65.
[9]  张林彬. 长引水隧洞水电站厂房动力特性研究[D]. 天津:天津大学,2014.
Zhang L B. Study on Dynamic Characters of Hydropower House with Long Distance Tunnel[D]. Tianjin:Tianjin University,2014.
[10] Liu X, Zeng Y, Cao S. Numerical prediction of vortex flow in hydraulic turbine draft tube for LES[J]. Journal of Hydrodynamics,Ser. B,2005,4(17):132-136.
[11] Favrel A,Müller A,Landry C,et al. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry[J]. Experiments in Fluids,DOI:10.1007/s00348-015-2085-5,2015.
[12] 刘启钊. 水轮机[M]. 北京:中国水利水电出版社,1998.
Liu Q Z. Water Turbine[M]. Beijing:China Water and Power Press,1998.
[13] 刘小兵. 水轮机压力脉动及水力振动的理论研究与数值预测[D]. 成都:四川大学,2004.
Liu X B. Theoretical Investigation and Numerical Prediction of Pressure Pulsation and Hydraulic Vibration for Water Turbine[D]. Chengdu:Sichuan University,2004.
[14] 张梁,吴玉林,刘树红,等. 混流式水轮机内部流场的三维空化湍流计算[J]. 工程热物理学报,2007,28(4):598-600.
Zhang L,Wu Y L,Liu S H,et al. 3D cavitation turbulent flow simulation in Francis turbine[J]. Journal of Engineering Thermophysics,2007,28(4):598-600.
[15] 赵桂连. 水电站水机电联合过渡过程研究[D]. 武汉:武汉大学,2004.
Zhao G L. Study on the United Transient Process for Hydraulic, Mechanical and Power System[D]. Wuhan:Wuhan University,2004.

PDF(2672 KB)

Accesses

Citation

Detail

段落导航
相关文章

/